• 제목/요약/키워드: Microbial Transformation

검색결과 84건 처리시간 0.029초

Capsaicinoids의 미생물전환 메카니즘 (Micerobial Transformation Mechanism of Capsaicinoids)

  • 이익수;이상섭
    • 약학회지
    • /
    • 제31권5호
    • /
    • pp.280-285
    • /
    • 1987
  • There are three plausible bioconversion pathways in biodegradation mechanism of capsaicinoids; first, side chain degradation through $\omega$-hydroxylation and $\beta$-oxidation, secondly, aromatic ring hydroxylation, and lastly, hydrolysis on the acidaraide linkage. In microbes, it was reported that capsaicin and its synthetic, analog, nonoylvanillylamide(NVA), could be metabolized to N-vanillylcarbamoylbutyric acid via $\omega$-hydroxylation and consecutive $\beta$-oxidations by Aspergillus niger. In order to broaden the scope of microbial degradation of capsaicinoids, over thirty strains of various fungi including Aspergillus, Penicillum, Mycotypha, Gliocladium, Paecilomyces, Byssoclamys, Conidiobolus, Thamnidium, and Entomophthora. It was observed that almost all the strains examined oxidized, the side chain of capsaicids as A. niger did. These observations strongly support the notion that side chain degradation is the most dominant pathway in the microbial degradation of capsaicinoids.

  • PDF

XAD 수지분획과 생분해 실험에 의한 기원별 용존유기물질 특성 연구 (Study on the Characteristics of Dissolved Organic Matters from Diverse Sources by XAD Resin Fractiontion and Microbial Incubation Experiments)

  • 오세진;최찬규;허진;정명숙;신현상
    • 한국물환경학회지
    • /
    • 제26권6호
    • /
    • pp.976-985
    • /
    • 2010
  • In this study, characteristics of dissolved organic matter (DOM) from Lake Paldang and seven other DOM sources (lake plankton, plants, soil, composite, treated sewage) were studied using XAD resin fractionation and 28-day microbial incubation experiment. Distribution patterns of DOM-fractions, which include hydrophilic acids (HiA), hydrophilic bases (HiB), hydrophilic neutrals (HiN), hydrophobic acids (HoA), hydrophobic neutrals (HoN) and the extent of DOM biodegradation (i.e., biodegradability) were different depending on the origins of the DOM samples. The DOM distribution pattern and the biodegradability were found to be effective for distinguishing the different DOM sources. The biodegradability (%) had negative correlations with the content (%) of hydrophobic fractions (Ho) and specific UV absorbance of DOM, which indicate that the Ho fractions contain more aromatic carbon structures and relatively stable during biodegradation, irrespective of the sources. To gain additional insight into the microbial transformation of the DOM, we also investigated the changes in the fraction's distribution for plankton, leaf litter and composite samples after the incubation. The results showed that biodegradation of hydrophilic fraction (Hi) causes an increase in the proportion of Ho (HoA, HoN), while biodegradation of HoA increases the HoN production.

전자공여체와 황산염 이용 토착미생물에 의한 침철석(α-FeOOH) 환원 연구 (Biotic and Abiotic Reduction of Goethite (α-FeOOH) by Subsurface Microorganisms in the Presence of Electron Donor and Sulfate)

  • 권만재;양중석;심무준;이승학
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권1호
    • /
    • pp.54-62
    • /
    • 2014
  • To better understand dissimilatory iron and sulfate reduction (DIR and DSR) by subsurface microorganisms, we investigated the effects of sulfate and electron donors on the microbial goethite (${\alpha}$-FeOOH) reduction. Batch systems were created 1) with acetate or glucose (donor), 2) with goethite and sulfate (acceptor), and 3) with aquifer sediment (microbial source). With 0.2 mM sulfate, goethite reduction coupled with acetate oxidation was limited. However, with 10 mM sulfate, 8 mM goethite reduction occurred with complete sulfate reduction and x-ray absorption fine-structure analysis indicated the formation of iron sulfide. This suggests that goethite reduction was due to the sulfide species produced by DSR bacteria rather than direct microbial reaction by DIR bacteria. Both acetate and glucose promoted goethite reduction. The rate of goethite reduction was faster with glucose, while the extent of goethite reduction was higher with acetate. Sulfate reduction (10 mM) occurred only with acetate. The results suggest that glucose-fermenting bacteria rapidly stimulated goethite reduction, but acetate-oxidizing DSR bacteria reduced goethite indirectly by producing sulfides. This study suggests that the availability of specific electron donor and sulfate significantly influence microbial community activities as well as goethite transformation, which should be considered for the bioremediation of contaminated environments.

전자에너지 손실분광 분석법을 이용한 정량적 철산화수 측정 (Quantitative Determination of Fe-oxidation State by Electron Energy Loss Spectroscopy (EELS))

  • 양기호;김진욱
    • 자원환경지질
    • /
    • 제45권2호
    • /
    • pp.189-194
    • /
    • 2012
  • 생지화학적 반응으로 생성된 광물은 화학적 혹은 구조적 변화를 보여주고 있다. 이러한 광물형성의 메커니즘을 밝히기 위해서는 고해상도를 가진 전자현미경을 이용한 나노스케일 분석이 불가피 하다. 투과전자현미경에 장착되어있는 전자에너지 손실분광 분석법 (EELS)을 이용하여 미생물-광물반응 시 일어나는 현상을 두 가지의 예를 들어서 설명하고자 한다. 1) 철 환원 박테리아에 의한 논트로나이트 의 일라이트 로의 전이; 2) 자철석의 환원으로 인한 능철석의 형성. 특히 철산화/환원의 정량적 분석을 통하여 시간적 변화에 따른 철 산화도 측정은 생지화학적 광물변화에 대한연구를 용이하게 해준다. 따라서 본 논문은 EELS의 분석방법 및 장점을 소개함을 목적으로 한다.

New metabolites from the biotransformation of ginsenoside Rb1 by Paecilomyces bainier sp.229 and activities in inducing osteogenic differentiation by Wnt/β-catenin signaling activation

  • Zhou, Wei;Huang, Hai;Zhu, Haiyan;Zhou, Pei;Shi, Xunlong
    • Journal of Ginseng Research
    • /
    • 제42권2호
    • /
    • pp.199-207
    • /
    • 2018
  • Background: Ginseng is a well-known traditional Chinese medicine that has been widely used in a range of therapeutic and healthcare applications in East Asian countries. Microbial transformation is regarded as an effective and useful technology in modification of nature products for finding new chemical derivatives with potent bioactivities. In this study, three minor derivatives of ginsenoside compound K were isolated and the inducing effects in the Wingless-type MMTV integration site (Wnt) signaling pathway were also investigated. Methods: New compounds were purified from scale-up fermentation of ginsenoside Rb1 by Paecilomyces bainier sp. 229 through repeated silica gel column chromatography and high pressure liquid chromatography. Their structures were determined based on spectral data and X-ray diffraction. The inductive activities of these compounds on the Wnt signaling pathway were conducted on MC3T3-E1 cells by quantitative real-time polymerase chain reaction analysis. Results: The structures of a known 3-keto derivative and two new dehydrogenated metabolites were elucidated. The crystal structure of the 3-keto derivative was reported for the first time and its conformation was compared with that of ginsenoside compound K. The inductive effects of these compounds on osteogenic differentiation by activating the Wnt/b-catenin signaling pathway were explained for the first time. Conclusion: This study may provide a new insight into the metabolic pathway of ginsenoside by microbial transformation. In addition, the results might provide a reasonable explanation for the activity of ginseng in treating osteoporosis and supply good monomer ginsenoside resources for nutraceutical or pharmaceutical development.

Advances in the chemistry, pharmacological diversity, and metabolism of 20(R)-ginseng saponins

  • Wang, Chaoming;Liu, Juan;Deng, Jianqiang;Wang, Jiazhen;Weng, Weizhao;Chu, Hongxia;Meng, Qingguo
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.14-23
    • /
    • 2020
  • Ginseng has been used as a popular herbal medicine in East Asia for at least two millennia. However, 20(R)-ginseng saponins, one class of important rare ginsenosides, are rare in natural products. 20(R)-ginseng saponins are generally prepared by chemical epimerization and microbial transformation from 20(S)-isomers. The C20 configuration of 20(R)-ginseng saponins are usually determined by 13C NMR and X-ray single-crystal diffraction. 20(R)-ginseng saponins have antitumor, antioxidative, antifatigue, neuroprotective, and osteoclastogenesis inhibitory effects, among others. Owing to the chemical structure and pharmacological and stereoselective properties, 20(R)-ginseng saponins have attracted a great deal of attention in recent years. In this study, the discovery, identification, chemical epimerization, microbial transformation, pharmacological activities, and metabolism of 20(R)-ginseng saponins are summarized.

Transgenic Lettuce Expressing Chalcone Isomerase Gene of Chinese Cabbage Increased Levels of Flavonoids and Polyphenols

  • Han, Eun-Hyang;Lee, Ji-Sun;Lee, Jae-Woong;Chung, In-Sik;Lee, Youn-Hyung
    • 원예과학기술지
    • /
    • 제29권5호
    • /
    • pp.467-473
    • /
    • 2011
  • Flavonoid are large group of the polyphenolic compounds which are distinguished by an aromatic or phenolic ring structure and the phenolic compounds are induced by microbial infection, ultraviolet radiation, temperature and chemical stress. They are known for their antioxidant activity, anti-allergic, anti-inflammatory, anti-microbial and anti-cancer activities. In this study, changes in flavonoid content were investigated using heterologous chalcone isomerase (CHI) expression system. Also, phenolic compounds level was measured to examine the relation between flavonoids and phenols contents. Explants of lettuce (Lactuca sativa L.) were transformed with Agrobacterium tumefaciens LBA 4404 strain containing pFLH-CHI (derived from pPZP2Ha3) vector constructed with CHI gene from Brassica rapa. The putative transgenic plants were confirmed by genomic DNA PCR analysis. Also the transcription levels of the gene were analyzed by semi-quantitative RT-PCR with gene specific primers. The total flavonoid contents were increased at $T_0$ and $T_1$ generations over 1.4 and 4.0 fold, respectively. Total phenol contents also increased at $T_1$ generation. These results indicate that CHI gene plays an important role to regulate the accumulation of flavonoids and its component changes.

혼합배양 미생물의 세포외 물질이 2,4,6-Trinitrotoluene 변환에 미치는 영향에 관한 연구 (Study on the 2,4,6-Trinitrotoluene reduction rate by mediation of extracellular material of mixed culture)

  • 한기봉
    • 환경위생공학
    • /
    • 제11권2호
    • /
    • pp.27-31
    • /
    • 1996
  • 2,4,6-Trinitrotoluene(TNT) was reduced into intermediate products by mixed culture incubated in anaerobic condition. To test the effects of extracellular material to electron transfer between sulfide and TNT, filtered medium of mixed culture was loaded in the test tubes with TNT and sulfide. The transformation rate was measured under four different conditions. The rate under microbial activity was the fastest among under different conditions. With sulfide or filtrate alone and TNT, the reactions were measured as the slowest reactions or no reactions occured, respectively. The reaction rate coefficient were calculated by linear regression and the first order kinetic was fitted best. Also, the plot of rate coefficients (K$_{f}$) showed linear relationships when at time zero TNT and sulfide concentration were 20 mg/1 and 6.0 mM, respectively. By extrapolation, reaction rate coefficient of 100% filtrate could be calculated as 0.0054/minute. However, reaction rate was affected by different concentration of sulfide, so it is a dependent of sulfide concentration. The results of this test showed TNT reduction rate can be limited more by microbial reaction than by mediation of filtrate or sulfide and filtrate alone.

  • PDF

Microbial Transformation of Aniline to Acetaminophen

  • Lee, Sang-Sup;Jin, Hyung-Jong;Son, Mi-Won
    • Archives of Pharmacal Research
    • /
    • 제15권1호
    • /
    • pp.30-34
    • /
    • 1992
  • In order to obtain acetaminophen, a popular analgesic-antipyretic, through microbial p-hydroxylation and N-acetylation of aniline, various fungi and bacteria were secreened. Among them, Streptomyces species were chosen for strain improvement by the use of interspecific protoplast fusion technique. Two interspecific fused strains were developed between S. rimosus (N-cetylation function) and S. aureofaciens (p-hydroxylation function) and also between S. lividans and S. globisporus. For efficient protoplast fusion and cell wall regeneration, various conditions were examined. In a typical experiment of mixed S rimosus ($pro^- \;his^-$) and S. aureofaciens ($ilv^-$) protoplasts with 40% (w/v) polythylene glycol 3350 (PEG) for 3 min gave $8.3\times10^{-7}$ of fusion frequency. Treatment of mixed S. lividans (pant-) and S. globisporus (leu-) protoplasts with 50% (w/v) PEG for 3 min at $30^\circ{C}$ gave $1.2\times10^{-6}$ of frequency. Among the fused strains, up to 40-50% increase in p-hydroxylation power was observed. To investigate the possibility of plasmid involvement in p-hydroxylation power was observed. To investigate the possibility of plasmid involvement in p-hydroxylation of acetanilide, plasmid curing was attempted. We found that cells treated with acriflavine (at the frequency of 100%) and cells regenerated from protoplsts of S. auroefaciens (2% frequency) lost their p-hydroxylation function.

  • PDF

Microbial $9{\alpha}$-Hydroxylase:Epoxidation of 9(11)-dehydro-$17{\alpha}$-methyl-testosterone

  • Kang, Hee-Kyoung;Lee, Sang-Sup
    • Archives of Pharmacal Research
    • /
    • 제20권6호
    • /
    • pp.525-528
    • /
    • 1997
  • Steroid $9{\alpha}$.-hydroxylase is a key enzyme system in steroid nucleus degradation in company with ${\Delta}$-dehydrogenase. To examine $9{\alpha}$-hydroxylase activity during microbial transformation of steroids, 9(11)-dehydro-$17{\alpha}$-methyl-testosterone was adopted as a stable substrate for preventing the rupture of steroid nucleus. Using Nocardia restrictus ATCC 14887 capable of introducing a $9{\alpha}$-hydroxyl group into steroids, $9{\alpha}$,$11{\alpha}$-oxido-$17{\beta}$-hydroxy-$17{\alpha}$-methyl-4-androstene-3-one and $9{\alpha}$-hydroxyl group into steroids,$9{\alpha}$,$11{\alpha}$-oxido-$17{\beta}$-hydroxy-$17{\alpha}$-methyl-1,4-androstadiene-3- one were obtained. These microbiologically transformed products could be used as reference compounds in the enzyme assay.

  • PDF