• Title/Summary/Keyword: Microbial Transformation

Search Result 84, Processing Time 0.034 seconds

Microbial Transformation of Bioactive Diterpenoids from Acanthopanax koreanum by Fusarium oxysporum

  • Kim, Young-Ho;Hyun, Seoung-Hae;Kim, Hang-Sub;Lee, Sung-Woo;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.92-97
    • /
    • 1992
  • Microbial transformation of (-)kaur-l6-en-19-oic acid and (-)pimara-9(1l), 15-dien-19-oic acid from A. koreanum was investigated. Throughout the screening of the capability of metabolizing these bioactive diterpenoids, two microorganisms have chosen among various fungi and streptomycetes tested. Scale-up fermentation with Fusarium oxysporum KCTC 6051 produced two metabolites related to the precursor diterpenoids. The two metabolites were isolated by column chromatography and identified by chemical and spectroscopic methods as $2\beta$, $16\alpha$-dihydroxy kauran-19-oic acid and $16\alpha$-hydroxy kauran-19-oic acid. However any microorganisms capable to transform (-) pimara-9(11), 15-dien-19-oic acid was not screened in this condition.

  • PDF

Transformation of Coprinus congregatus with a Linearized Plasmid Vector to Phosphinothricin Resistance (Coprinus congregatus에서 선형으로 전환한 plasmid DNA를 사용하여 phosphinothricin 저항성에 대한 형질전환)

  • Leem, Young-Eun;Kim, Soon-ja;Choi, Hyoung-Tae
    • Korean Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.274-276
    • /
    • 1997
  • Transformation of Coprinus congregatus with a linearized plasmid has been successfully carried out using phosphinothricin resistance gene as a dominant selectable marker. The transforming frequency was about 500 transformants per microgram of DNA using the protoplast-$CaCl_2$ method. The transforming vector pBARGEM 7-1 which had the phosphinothricin resistance gene was detected in the restriction enzyme fragments of chromosomal DNA from a transformant by Southern hybridization.

  • PDF

Influences of Aeration Rate and Manure Temperature on Phosphorus Transformation in Swine Liquid Manure Bioreactor (액상 돈분 발효조에서 폭기량과 돈분온도가 인의 형태 변환에 미치는 영향)

  • Park K. J.;Hong J. H.;Kim J. Y.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.6 s.107
    • /
    • pp.508-514
    • /
    • 2004
  • This study was conducted to investigate the influences of aeration rates and temperatures on phosphorus transformation in the manure during treatment of swine manure in 15.3L batch reactor. The total phosphorus of raw manure was composed of $91.5\%$ of inorganic phosphorus and $8.5\%$ of organic phosphorus. During the experiment, inorganic phosphorus decreased from $91.5\%\;(385.7\;mg/L)\;to\;25.8-42.7\%\;(108.8-179.8\;mg/L)$ while organic phosphorus increased from $8.5\%\;(35.6\;mg/L)\;to\;57.3-74.2\%\;(241.5-312.5\;mg/L)$. The organic phosphorus was increased by the possible transformation of soluble inorganic phosphorus to poly-phosphate by the microbial uptake. However, soluble inorganic phosphorus was not decreased much during the experiment because the insoluble inorganic phosphorus was transferred to soluble inorganic phosphorus offsetting the microbial uptake. There was no significant difference in soluble inorganic proportion variance during the experiment among treatments for three liquid temperatures and three aeration levels. In terms of phosphorus transformation in the manure and energy consumption required for aeration, lower aeration was desirable fur the manure treatment.

Transformation Techniques for the Large Scale Production of Ginsenoside Rg3 (Ginsenoside Rg3의 함량증가를 위한 변환 기술)

  • Nam, Ki Yeul;Choi, Jae Eul;Park, Jong Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.5
    • /
    • pp.401-414
    • /
    • 2013
  • Ginsenoside Rg3 (G-Rg3) contained only in red ginseng has been found to show various pharmacological effects such as an anticancer, antiangiogenetic, antimetastastic, liver protective, neuroprotective immunomodulating, vasorelaxative, antidiabetic, insulin secretion promoting and antioxidant activities. It is well known that G-Rg3 could be divided into 20(R)-Rg3 and 20(S)-Rg3 according to the hydroxyl group attached to C-20 of aglycone, whose structural characteristics show different pharmacological activities. It has been reported that G-Rg3 is metabolized to G-Rh2 and protopanaxadiol by the conditions of the gastric acid or intestinal bacteria, thereby these metabolites could be absorbed, suggesting its absolute bioavailability (2.63%) to be very low. Therefore, we reviewed the chemical, physical and biological transformation methods for the production on a large scale of G-Rg3 with various pharmacological effects. We also examined the influence of acid and heat treatment-induced potentials on for the preparation method of higher G-Rg3 content in ginseng and ginseng products. Futhermore, the microbial and enzymatic bio-conversion technologies could be more efficient in terms of high selectivity, efficiency and productivity. The present review discusses the available technologies for G-Rg3 production on a large scale using chemical and biological transformation.

Comparison of nitrogen transformation dynamics in non-irradiated and irradiated alfalfa and red clover during ensiling

  • Dong, Zhihao;Li, Junfeng;Chen, Lei;Yuan, Xianjun;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1521-1527
    • /
    • 2019
  • Objective: To study the contribution of plant enzyme and microbial activities on protein degradation in silage, this study evaluated the nitrogen transformation dynamics during ensiling of non- and irradiated alfalfa (Medicago sativa L.) and red clover (Trifolium pratense L.). Methods: Alfalfa and red clover silages were prepared and equally divided into two groups. One group was exposed to ${\gamma}$-irradiation at a recommended dosage (25 Gky). Therefore, four types of silages were produced: i) non-irradiated alfalfa silage; ii) irradiated alfalfa silage; iii) non-irradiated red clover silage; and iv) irradiated red clover silage. These silages were opened for fermentation quality and nitrogen components analyses after 1, 4, 8, and 30 days, respectively. Results: The ${\gamma}$-irradiation successfully suppressed microbial activity, indicated by high pH and no apparent increases in fermentation end products in irradiated silages. All nitrogen components, except for peptide-N, increased throughout the ensiling process. Proteolysis less occurred in red clover silages compared with alfalfa silages, indicated by smaller (p<0.05) increment in peptide-N and free amino acid N (FAA-N) during early stage of ensiling. The ${\gamma}$-irradiation treatment increased (p<0.05) peptide-N and FAA-N in alfalfa silage at day 1, whereas not in red clover silage; these two nitrogen components were higher (p<0.05) between day 4 and day 30 in non-irradiated silages than the irradiated silages. The ammonia nitrogen and non-protein nitrogen were highest in non-irradiated alfalfa silage and lowest in irradiated red clover silage after ensiling. Conclusion: The result of this study indicate that red clover and alfalfa are two forages varying in their nitrogen transformation patterns, especially during early stages of ensiling. Microbial activity plays a certain role in the proteolysis and seems little affected by the presence of polyphenol oxidase in red clover compared with alfalfaa.

A Mathematical Model Development for Microbial Arsenic Transformation and Transport

  • Lim, Mi-Sun;Yeo, In-Wook;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.318-322
    • /
    • 2004
  • Arsenic is a toxic and carcinogenic metalloid, whose sources in nature include mineral dissolution and volcanic eruption. Abandoned mines and hazardous waste disposal sites are another major source of arsenic contamination of soil and aquatic systems. To predict concentrations of the toxic inorganic arsenic in aqueous phase. the biogeochemical redox processes and transport behavior need to be studied together and be coupled in a reactive transport model. A new reaction module describing the fate and transport of inorganic arsenic species (As(II)), dissolved oxygen, nitrate, ferrous iron, sulfate, and dissolved organic carbon are developed and incorporated into the RT3D code.

  • PDF

New Production of Antibacterial Polycyclic Quinazoline Alkaloid, Thielaviazoline, from Anthranilic Acid by the Marine-Mudflat-Derived Fungus Thielavia sp.

  • Leutou, Alain Simplice;Yun, Keumja;Son, Byeng Wha
    • Natural Product Sciences
    • /
    • v.22 no.3
    • /
    • pp.216-219
    • /
    • 2016
  • The microbial transformation of anthranilic acid (1) by the marine-mudflat-derived fungus Thielavia sp. produced an antibacterial polycyclic quinazoline alkaloid, thielaviazoline (2). The stereostructure of the metabolite was assigned based on detailed spectroscopic data analyses including comparison of the NMR ($^1H$ and $^{13}C$) data with those of reported compound (2). Compound 2 displayed in vitro antimicrobial activity against methicillin-resistant and multidrug-resistant Staphylococcus aureus (MRSA and MDRSA), with minimum inhibitory concentrations (MICs) of 6.25 and $12.5{\mu}g/mL$, respectively. Compound 2 also showed potent radical-scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) with an $IC_{50}$ of $11{\mu}M$, which was more active than the positive control, L-ascorbic acid ($IC_{50}$, $20.0{\mu}M$).

The Pragmatic Introduction and Expression of Microbial Transgenes in Plants

  • Ali, Sajid;Park, Soon-Ki;Kim, Won-Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.1955-1970
    • /
    • 2018
  • Several genetic strategies have been proposed for the successful transformation and expression of microbial transgenes in model and crop plants. Here, we bring into focus the prominent applications of microbial transgenes in plants for the development of disease resistance; mitigation of stress conditions; augmentation of food quality; and use of plants as "bioreactors" for the production of recombinant proteins, industrially important enzymes, vaccines, antimicrobial compounds, and other valuable secondary metabolites. We discuss the applicable and cost-effective approaches of transgenesis in different plants, as well as the limitations thereof. We subsequently present the contemporary developments in targeted genome editing systems that have facilitated the process of genetic modification and manifested stable and consumer-friendly, genetically modified plants and their products. Finally, this article presents the different approaches and demonstrates the introduction and expression of microbial transgenes for the improvement of plant resistance to pathogens and abiotic stress conditions and the production of valuable compounds, together with the promising research progress in targeted genome editing technology. We include a special discussion on the highly efficient CRISPR-Cas system helpful in microbial transgene editing in plants.