• Title/Summary/Keyword: Microbial Survival

Search Result 118, Processing Time 0.024 seconds

Diagnosis and Prognosis of Sepsis (패혈증의 진단 및 예후예측)

  • Park, Chang-Eun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.4
    • /
    • pp.309-316
    • /
    • 2021
  • Sepsis is a physiological response to a source of infection that triggers mechanisms that compromise organ function, leading to death if not treated early. Biomarkers with high sensitivity, specificity, speed, and accuracy that could differentiate sepsis from non-infectious systemic inflammatory response syndrome (SIRS) could bring about a revolution in sepsis treatment. Given the limitations and time required for microbial verification of pathogens, the accurate diagnosis of infection before employing antibiotic therapy is important and clinically necessary. Procalcitonin (PCT), lactate, C-reactive protein (CRP), cytokines, and proadrenomedullin (ProADM) are the common biomarkers used for diagnosis. The procalcitonin (PCT)-guided antibiotic treatment in patients with acute respiratory infections effectively reduces antibiotic exposure and side effects while improving survival rates. The evidence regarding sepsis screening in hospitalized patients is limited. Clinicians, researchers, and healthcare decision-makers should consider these findings and limitations when implementing screening tools, future research, or policy on sepsis recognition in hospitalized patients. The use of biomarkers in pediatric sepsis is promising, although such use should always be correlated with clinical evaluation. Biomarkers may also improve the prediction of mortality, especially in the early phase of sepsis, when the levels of certain pro-inflammatory cytokines and proteins are elevated.

Inhibition Effect of Bacillus subtilis on 365 nm UV-LED Irradiation According to Packaging Materials (포장재 조건에 따른 365 nm UV-LED 조사의 Bacillus subtilis 생육 억제 효과)

  • Lee, Da-Hye;Jeong, So-Mi;Xu, Xiaotong;Kim, Koth-Bong-Woo-Ri;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.332-336
    • /
    • 2019
  • The use of ultraviolet (UV) spectroscopy for foods is known to have a microbial inhibitory effect. UV-A having a longer wavelength than UV-C can be used for continuous or intermittent UV irradiation of food stored in containers or packages. Because UV-LED can be used effectively at a low price, this study reported the effect of UV-A 365 nm-LED on inhibiting Bacillus subtilis in accordance with the packaging conditions employed in daily use. The packaging materials were linear low-density polyethylene (LLD-PE), nylon/low density polyethylene (LDPE), polystyrene, and glass. When all packaging materials were treated with 365 nm UV-LED, B. subtilis was observed to remain inactive for 30-60 min. Further, compared with the control (-log 5), the survival rate of B. subtilis was -log 2.0-2.5 for nylon/LDPE and -log 2.58-3.61 for LLD-PE. These packaging materials showed an excellent inhibitory effect regardless of their thickness. Typically, a decrease in the viable cell count of more than 3 log indicates a 99.9% bactericidal effect. These results suggest that 365 nm UV-LED permeated the packaging material and inhibited bacterial growth.

Food Waste Composting by Using an Inoculum-Mixture Containing New Facultative Anaerobic Bacteria (신규 통성혐기성 세균으로 제조한 발효흙에 의한 음식물 쓰레기의 퇴비화)

  • Hwang, Kyo-Yeol;Lee, Jae-Yeon;Kim, Keun;Sung, Su-Il;Han, Sung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.65-72
    • /
    • 2001
  • Four newly isolated bacteria from soil were used to manufacture microbial inoculum to compost food waste. The bacteria, GM103, V25, V31, and V35, were identified as Bacillus licheniformis, B. subtilis, B. stearothermophilius, and B, subtilis, respectively. The bacterial strains were efficient to degrade protein and starch and also able to inhibit the growth of plant pathogenic fungus Rhizopus stronifer. The GM103 showed distinct capability in degrading starch, but grow only aerobically. The other three bacterial strains. V25, V31, and V35, could grow both aerobically as well as anaerobically, in 10%(w/v) salt, at $50^{\circ}C$, and had good viability and survival rate in soil. These characteristics of the bacterial strains are very adquate in Korean food composting containing high concentration of salt, especially at home. By mixing the 4 bacterial culture broth with molasses, beet pulp, zeolite, The bacterial inoculum for food waste composting-BIOTOP-CLEAN-was made. The performance of food waste composting by the BIOTOP-CLEAN was compared with that by control(not treated) and HS(other demestic company's inoculum product for food waste composting). The maximum temperature of the food waste during the composting with the BIOTOP-CLEAN was $50^{\circ}C$, while those of the control and HS were $30^{\circ}C$ and $35^{\circ}C$, respectively. The BIOTOP-CLEAN gave the good smell and showed dark brown color, while the control gave bad smell and HS gave less bad smell. These indicates that the food waste composting by the BIOTOP-CLEAN had been well accomplished. The culture broth of V25, V31, V35 were sparyed to the plants of tomato, chinese cabbage, raddish, red pepper every month and the spraying the culture broth to these plant significantly improved the production yield of the crops, due to the control effect of the bacterial strains against the plant pathogens.

  • PDF

Behavior of Campylobacter jejuni Biofilm Cells and Viable But Non-Culturable (VBNC) C. jejuni on Smoked Duck (훈제오리에서 캠필로박터균 생물막 및 Viable But Non-Culturable(VBNC) 상태에서의 행동특성)

  • Jo, Hye Jin;Jeon, Hye Ri;Yoon, Ki Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.7
    • /
    • pp.1041-1048
    • /
    • 2016
  • Biofilm cells and viable but non-culturable (VBNC) state may play a role in the survival of Campylobacter jejuni under unfavorable environmental conditions. The objective of this study was to investigate the behavior of C. jejuni biofilm cells and VBNC cells on smoked duck. The transfer of C. jejuni biofilm cells to smoked duck and its ability to resuscitate from biofilm and VBNC cells on smoked duck was investigated. Transfer experiments were conducted from C. jejuni biofilm cells to smoked duck after 5 min, 1 h, 3 h, and 24 h contact at room temperature, and the efficiency of transfer (EOT) was calculated. In addition, smoked duck was inoculated with C. jejuni biofilm and VBNC cells and then stored at 10, 24, 36, and $42^{\circ}C$ to examine the cells' ability to resuscitate on smoked ducks. The 5 min contact time between C. jejuni biofilm cells and smoked duck showed a higher EOT (0.92) than the 24 h contact time (EOT=0.08), and the EOT decreased as contact time increased. Furthermore, C. jejuni biofilm cells on smoked duck were not recovered at 10, 24, and $36^{\circ}C$, and C. jejuni VBNC cells were not resuscitated at $42^{\circ}C$. Although the resuscitation of C. jejuni biofilm and VBNC cells was not observed on smoked duck, microbial criteria of C. jejuni is needed in poultry and processed poultry products due to risk of its survival and low infectious dose.

Eco-Friendly Organic Pesticides (EFOP)-Mediated Management of Persimmon Pests, Stathmopoda masinissa and Riptortus pedestris (식물 및 미생물 유래 유기농자재 살충효과: 단감해충 감꼭지나방, 톱다리개미허리노린재)

  • Kim, Jong Cheol;Yu, Jeong Seon;Song, Min Ho;Lee, Mi Rong;Kim, Sihyeon;Lee, Se Jin;Kim, Jae Su
    • Korean journal of applied entomology
    • /
    • v.55 no.4
    • /
    • pp.319-327
    • /
    • 2016
  • Chemical pesticides have been used to control persimmon pests, however the overuse of the pesticides caused insect resistance, followed by failure in pest management and residual problems. Herein we investigate the potential of eco-friendly organic pesticides (EFOP) on the control persimmon pests, Stathmopoda masinissa (persimmon fruit moth) and Riptortus pedestris (bean bug). Ten commercially available plant-derived organic pesticides and one microbial pesticide were sprayed on the target insects in laboratory conditions. The chemical pesticide, buprofezin+dinotefuran wettable powder served as a positive control. In the first bioassay against persimmon fruit moth, alternatively Plutella xylostella larvae were used due to the lack of persimmon fruit moth population from fields, and three organic pesticides showed high control efficacy, such as pyroligneous liquor (EFOP-1), the mixture of Chinese scholar tree extract, goosefoot and subtripinnata extracts (EFOP-2) and Bacillus thuringiensis subsp. aizawai NT0423 (EFOP-11). When the three selected organic pesticides were treated on the persimmon fruit moths, the EFOP-2 treatment showed the highest control efficacy: 27.7% (5 days), 13.3% (7 days) and 6.7% (10 days) of survival rates. In the bioassay against bean bugs, the mixture of Chinese scholar tree, goosefoot and subtripinnata extracts (EFOP-2 and EFOP-9) and the extracts of sophora and derris (EFOP-10) showed high control efficacy, particularly the highest in the treatment of EFOP-2: 20.0% (5 days) and 16.7% (10 days) of survival rates. These results suggest that the mixture of Chinese scholar tree, goosefoot and subtripinnata extracts (EFOP-2) has high and multiple potential in the management of the persimmon pests.

Studies on the Various Utilization of Microbial Formulation for the Production of Vegetable Crops (원예작물(園藝作物) 생산성(生産性)에 미치는 미생물(微生物) 제제(製劑)의 복합적(複合的) 이용연구(利用硏究))

  • Kim, Kwang-Sik;Kim, Young-Woong;Choi, Young-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.191-205
    • /
    • 1995
  • The carrier materials used for the development of bacterial inoculants to be effective in field were made with various carrier materials of two major forms, alginate bead and powder inoculants. Inoculants were prepared after mixing those carrier materials with Pseudomonas fluorescens SSL3 and Bacillus subtilis B5, and the treatment effects of each inoculants was investigated on cucumber, tomato, pepper and potato. Survival density of SSL3 and B5 in various carrier materials for duration of storage and the bead inoculants were better than the powder. In the powders, survival rate increased in carrier materials treated 5% skimilk. The growth condition of microorganisms in carrier materials is good at powder. When they were preserved in the long period, contamination is problem. Scanning(200 to 600nm) of the P. fluorescens SSL3 supernatant in centrifuged MKB broth incubated for 48h had two main peaks, pyochelin(300nm) and pyoverdin(400nm). The potato yield in field experiments of spring, treated with bead formulas showed increase of 22~29% in whole potato breeds as compared with control, because the bead formulas degraded, and released the antibiotic microorganisms in slow and constant rate. In the pot experiment, there were significant difference in soil, wheatbran, and bead formed wheatbran.

  • PDF

Physiological Ecology of parasitic Dinoflagellate Amoebophrya and Harmful Algal Blooms (기생성 와편모류 Amoebophrya의 생리 생태적 특성과 적조)

  • 박명길
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.181-194
    • /
    • 2002
  • Parasitism is a one-sided relationship between two organisms in which one benefits at the expense of the other. Parasitic dinoflagellates, particularly species of Amoebophrya, have long been thought to be a potential biological agent for controlling harmful algal bloom(HAB). Amoebophrya infections have been reported for over 40 species representing more than 24 dinoflagellate genera including a few toxic species. Parasitic dinoflagellates Amoebophrya spp. have a relatively simple life cycle consisting of an infective dispersal stage (dinospore), an intracellular growth stage(trophont), and an extracellular reproductive stage(vermiform). Biology of dinospores such as infectivity, survival, and ability to successfully infect host cells differs among dinoflagellate host-parasite systems. There are growing reports that Amoebophrya spp.(previously, collectively known as Amoebophrya ceratii) exhibit the strong host specificity and would be a species complex composed of several host-specific taxa, based on the marked differences in host-parasite biology, cross infection, and molecular genetic data. Dinoflagellates become reproductively incompetent and are eventually killed by the parasite once infected. During the infection cycle of the parasite, the infected host exhibits ecophysiologically different patterns from those of uninfected host in various ways. Photosynthetic performance in autotrophic dinoflagellates can be significantly altered following infection by parasitic dinoflagellate Amoebophrya, with the magnitude of the effects over the infection cycle of the parasite depending on the site of infection. Parasitism by the parasitic dinoflagellate Amoebophrya could have significant impacts on host behavior such as diel vertical migration. Parasitic dinoflagellates may not only stimulate rapid cycling of dissolved organic materials and/or trace metals but also would repackage the relatively large sized host biomass into a number of smaller dinospores, thereby leading to better retention of host's material and energy within the microbial loop. To better understand the roles of parasites in plankton ecology and harmful algal dynamics, further research on a variety of dinoflagellate host-parasite systems is needed.

Effect of Omija(Schizandra chinensis) Extract on the Growth Inhibition of Food Borne Pathogens in Yoghurt (오미자 추출액 첨가 요구르트의 식중독균 증식 억제 효과)

  • 홍경현;남은숙;박신인
    • Food Science of Animal Resources
    • /
    • v.23 no.4
    • /
    • pp.342-349
    • /
    • 2003
  • Escherichia coli O157:H7, Staphylococcus aureus and Salmonella enteritidis are food borne pathogens involved in food poisoning in numerous countries. This study aimed to obtain knowledges on the survival of Esc coli O157:H7, Sta aureus and Sal. enteritidis in the yoghurt added with water extract of Omija(Schizandra chinensis). The growth inhibition of Schizandra chinensis extract on the food borne pathogens were measured by total microbial count and effect of growth inhibition was correspondent to the concentration of Schizandra chinensis extract. The highest growth inhibition effect of Schizandra chinensis extract was shown on the Sta aureus followed by Sal. enteritidis and Esc. coli O157:H7. The number of surviving Esc. coli O157:H7 cell(3.55${\times}$10$\^$5/ CFU/mL) was decreased to 1.00${\times}$10$^1$∼3.00${\times}$10$^1$ CFU/mL after 24 hours incubation by the addition of 0.4∼l.0% of Schizandra chinensis extract in the yoghurt. And also the viable cell counts of surviving Sta. aureus cells (initial inoculum 1.24${\times}$10$\^$5/ CFU/mL) were decreased gradually to 4.00${\times}$10$^2$∼8.50${\times}$10$^2$ CFU/mL after 48 hours of incubation, but the viable cells of Sal. enteritidis were not detected after 24 hours of incubation. Growth of the food borne pathogens was strongly inhibited by the addition and incubation of Schizandra chinensis extract for 48 hours in the yoghurt.