Browse > Article
http://dx.doi.org/10.15324/kjcls.2021.53.4.309

Diagnosis and Prognosis of Sepsis  

Park, Chang-Eun (Department of Biomedical Laboratory Science, Molecular Diagnostics Research Institute, Namseoul University)
Publication Information
Korean Journal of Clinical Laboratory Science / v.53, no.4, 2021 , pp. 309-316 More about this Journal
Abstract
Sepsis is a physiological response to a source of infection that triggers mechanisms that compromise organ function, leading to death if not treated early. Biomarkers with high sensitivity, specificity, speed, and accuracy that could differentiate sepsis from non-infectious systemic inflammatory response syndrome (SIRS) could bring about a revolution in sepsis treatment. Given the limitations and time required for microbial verification of pathogens, the accurate diagnosis of infection before employing antibiotic therapy is important and clinically necessary. Procalcitonin (PCT), lactate, C-reactive protein (CRP), cytokines, and proadrenomedullin (ProADM) are the common biomarkers used for diagnosis. The procalcitonin (PCT)-guided antibiotic treatment in patients with acute respiratory infections effectively reduces antibiotic exposure and side effects while improving survival rates. The evidence regarding sepsis screening in hospitalized patients is limited. Clinicians, researchers, and healthcare decision-makers should consider these findings and limitations when implementing screening tools, future research, or policy on sepsis recognition in hospitalized patients. The use of biomarkers in pediatric sepsis is promising, although such use should always be correlated with clinical evaluation. Biomarkers may also improve the prediction of mortality, especially in the early phase of sepsis, when the levels of certain pro-inflammatory cytokines and proteins are elevated.
Keywords
Biomarker; Cytokine; Laboratory detection; Multi-markers; Sepsis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lawrence KL, Kollef MH. Antimicrobial stewardship in the intensive care unit: advances and obstacles. Am J Respir Crit Care Med. 2009;179:434-438. https://doi.org/10.1164/rccm.200809-1394CP   DOI
2 Kutz A, Briel M, Christ-Crain M, Stolz D, Bouadma L, Wolff M, et al. Prognostic value of procalcitonin in respiratory tract infections across clinical settings. Crit Care. 2015;19:74. https://doi.org/10.1186/s13054-015-0792-1   DOI
3 Kitanovski L, Jazbec J, Hojker S, Derganc M. Diagnostic accuracy of lipopolysaccharide-binding protein for predicting bacteremia/clinical sepsis in children with febrile neutropenia: comparison with interleukin-6, procalcitonin and C-reactive protein. Support Care Cancer. 2014;22:269-277. https://doi.org/10.1007/s00520-013-1978-1   DOI
4 Amland RC, Hahn-Cover KE. Clinical decision support for early recognition of sepsis. Am J Med Qual. 2016;31:103-110. https://doi.org/10.1177/1062860614557636   DOI
5 Bloos F, Trips E, Nierhaus A, Briegel J, Heyland DK, Jaschinski U, et al. Effect of sodium selenite administration and procalcitonin-guided therapy on mortality in patients with severe sepsis or septic shock: a randomized clinical trial. JAMA Intern Med. 2016;176:1266-1276. https://doi.org/10.1001/jamainternmed.2016.2514   DOI
6 Levy MM, Rhodes A, Phillips GS, Townsend SR, Schorr CA, Beale R, et al. Surviving sepsis campaign: association between performance metrics and outcomes in a 7.5-year study. Crit Care Med. 2015;43:3-12. https://doi.org/10.1097/CCM.0000000000000723   DOI
7 Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344-353. https://doi.org/10.1097/01.ccm.0000194725.48928.3a   DOI
8 Mansur A, von Gruben L, Popov AF, Steinau M, Bergmann I, Ross D, et al. The regulatory toll-like receptor 4 genetic polymorphism rs11536889 is associated with renal, coagulation and hepatic organ failure in sepsis patients. J Transl Med. 2014;12:177. https://doi.org/10.1186/1479-5876-12-177   DOI
9 Povoa P, Coelho L, Almeida E, Fernandes A, Mealha R, Moreira P, et al. Early identification of intensive care unit-acquired infections with daily monitoring of c-reactive protein: a prospective observational study. Crit Care. 2006;10:R63. https://doi.org/10.1186/cc4892   DOI
10 Schuetz P, Aujesky D, Muller C, Muller B. Biomarker-guided personalised emergency medicine for all-hope for another hype? Swiss Med Wkly. 2015;145:w14079. https://doi.org/10.4414/smw.2015.14079   DOI
11 Kellum JA, Kong L, Fink MP, Weissfeld LA, Yealy DM, Pinsky MR, et al. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the genetic and inflammatory markers of sepsis (GenIMS) study. Arch Intern Med. 2007;167:1655-1663. https://doi.org/10.1001/archinte.167.15.1655   DOI
12 Bozza FA, Salluh JI, Japiassu AM, Soares M, Assis EF, Gomes RN, et al. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit Care. 2007;11:R49 https://doi.org/10.1186/cc5783   DOI
13 Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580-637. https://doi.org/10.1097/CCM.0b013e31827e83af   DOI
14 Liu S, Hou Y, Cui H. Clinical values of the early detection of serum procalcitonin, C-reactive protein and white blood cells for neonates with infectious diseases. Pak J Med Sci. 2016;32:1326-1329. https://doi.org/10.12669/pjms.326.11395   DOI
15 Calfee CS, Thompson BT, Parsons PE, Ware LB, Matthay MA, Wong HR. Plasma interleukin-8 is not an effective risk stratification tool for adults with vasopressor-dependent septic shock. Crit Care Med. 2010;38:1436-1441. https://doi.org/10.1097/CCM.0b013e3181de42ad   DOI
16 Prucha M, Bellingan G, Zazula R. Sepsis biomarkers. Clin Chim Acta. 2015;440:97-103. https://doi.org/10.1016/j.cca.2014.11.012   DOI
17 Kelly BJ, Lautenbach E, Nachamkin I, Coffin SE, Gerber JS, Fuchs BD, et al. Combined biomarkers discriminate a low likelihood of bacterial infection among surgical intensive care unit patients with suspected sepsis. Diagn Microbiol Infect Dis. 2016;85:109-115. https://doi.org/10.1016/j.diagmicrobio.2016.01.003   DOI
18 Kumar S, Tripathy S, Jyoti A, Singh SG. Recent advances in biosensors for diagnosis and detection of sepsis: a comprehensive review. Biosens Bioelectron. 2019;124-125:205-215. https://doi.org/10.1016/j.bios.2018.10.034   DOI
19 Shapiro NI, Trzeciak S, Hollander JE, Birkhahn R, Otero R, Osborn TM, et al. A prospective, multicenter derivation of a biomarker panel to assess risk of organ dysfunction, shock, and death in emergency department patients with suspected sepsis. Crit Care Med. 2009;37:96-104. https://doi.org/10.1097/CCM.0b013e318192fd9d   DOI
20 Andersen LW, Mackenhauer J, Roberts JC, Berg KM, Cocchi MN, Donnino MW. Etiology and therapeutic approach to elevated lactate levels. Mayo Clin Proc. 2013;88:1127-1140. https://doi.org/10.1016/j.mayocp.2013.06.012   DOI
21 Wright SW, Lovelace-Macon L, Hantrakun V, Rudd KE, Teparrukkul P, Kosamo S, et al. sTREM-1 predicts mortality in hospitalized patients with infection in a tropical, middle-income country. BMC Med. 2020;18:159. https://doi.org/10.1186/s12916-020-01627-5   DOI
22 Read CB, Kuijper JL, Hjorth SA, Heipel MD, Tang X, Fleetwood AJ, et al. Cutting edge: identification of neutrophil PGLYRP1 as a ligand for TREM-1. J Immunol. 2015;194:1417-1421. https://doi.org/10.4049/jimmunol.1402303   DOI
23 Tsujimoto H, Ono S, Majima T, Kawarabayashi N, Takayama E, Kinoshita M, et al. Neutrophil elastase, MIP-2, and TLR-4 expression during human and experimental sepsis. Shock. 2005; 23:39-44. https://doi.org/10.1097/01.shk.0000145936.31967.d7   DOI
24 Vaschetto R, Nicola S, Olivieri C, Boggio E, Piccolella F, Mesturini R, et al. Serum levels of osteopontin are increased in SIRS and sepsis. Intensive Care Med. 2008;34:2176-2184. https://doi.org/10.1007/s00134-008-1268-4   DOI
25 Behnes M, Bertsch T, Lepiorz D, Lang S, Trinkmann F, Brueckmann M, et al. Diagnostic and prognostic utility of soluble CD 14 subtype (presepsin) for severe sepsis and septic shock during the first week of intensive care treatment. Crit Care. 2014;18:507. https://doi.org/10.1186/s13054-014-0507-z   DOI
26 Weber GF, Chousterman BG, He S, Fenn AM, Nairz M, Anzai A, et al. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science. 2015;347:1260-1265. https://doi.org/10.1126/science.aaa4268   DOI
27 Mikolajczyk TP, Nosalski R, Szczepaniak P, Budzyn K, Osmenda G, Skiba D. et al. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. FASEB J. 2016;30:1987-1999. https://doi.org/10.1096/fj.201500088R   DOI
28 Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303-1310. https://doi.org/10.1097/00003246-200107000-00002   DOI
29 Wong HR, Salisbury S, Xiao Q, Cvijanovich NZ, Hall M, Allen GL, et al. The pediatric sepsis biomarker risk model. Crit Care. 2012;16:R174. https://doi.org/10.1186/cc11652   DOI
30 Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016; 315:801-810. https://doi.org/10.1001/jama.2016.0287   DOI
31 O'Callaghan DJ, O'Dea KP, Scott AJ, Takata M, Gordon AC. Monocyte tumor necrosis factor-alpha-converting enzyme catalytic activity and substrate shedding in sepsis and noninfectious systemic inflammation. Crit Care Med. 2015;43:1375-1385. https://doi.org/10.1097/CCM.0000000000000992   DOI
32 Sinha M, Jupe J, Mack H, Coleman TP, Lawrence SM, Fraley SI. Emerging technologies for molecular diagnosis of sepsis. Clin Microbiol Rev. 2018;31:e00089-17. https://doi.org/10.1128/CMR.00089-17   DOI
33 Motal MC, Klaus DA, Lebherz-Eichinger D, Tudor B, Hamp T, Wiegele M, et al. Increased plasma vaspin concentration in patients with sepsis: an exploratory examination. Biochem Med (Zagreb). 2015;25:90-96. https://doi.org/10.11613/BM.2015.011   DOI
34 Wang K, Bhandari V, Giuliano JS Jr, O Hern CS, Shattuck MD, Kirby M. Angiopoietin-1, angiopoietin-2 and bicarbonate as diagnostic biomarkers in children with severe sepsis. PLoS One. 2014;9:e108461 https://doi.org/10.1371/journal.pone.0108461   DOI
35 Benz F, Roy S, Trautwein C, Roderburg C, Luedde T. Circulating microRNAs as biomarkers for sepsis. Int J Mol Sci. 2016;17:78. https://doi.org/10.3390/ijms17010078   DOI
36 Stryjewski GR, Nylen ES, Bell MJ, Snider RH, Becker KL, Wu A, et al. Interleukin-6, interleukin-8, and a rapid and sensitive assay for calcitonin precursors for the determination of bacterial sepsis in febrile neutropenic children. Pediatric Crit Care Med. 2005; 6:129-135. https://doi.org/10.1097/01.PCC.0000149317.15274.48   DOI
37 Schuetz P, Wirz Y, Sager R, Christ-Crain M, Stolz D, Tamm M, Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis. Lancet Infect Dis. 2018;18:95-107. https://doi.org/10.1016/S1473-3099(17)30592-3   DOI
38 Schuetz P, Birkhahn R, Sherwin R, Jones AE, Singer A, Kline JA, et al. Serial procalcitonin predicts mortality in severe sepsis patients: results from the multicenter procalcitonin monitoring sepsis (MOSES) study. Crit Care Med. 2017;45:781-789. https://doi.org/10.1097/CCM.0000000000002321   DOI
39 Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:762-774. https://doi.org/10.1001/jama.2016.0288   DOI
40 Gyang E, Shieh L, Forsey L, Maggio P. A nurse-driven screening tool for the early identification of sepsis in an intermediate care unit setting. J Hosp Med 2015;10:97-103. https://doi.org/10.1002/jhm.2291   DOI