• Title/Summary/Keyword: Microbial Phytase

Search Result 43, Processing Time 0.025 seconds

Effect of Microbial Phytase on Performance, Nutrient Absorption and Excretion in Weaned Pigs and Apparent Ileal Nutrient Digestibility in Growing Pigs

  • Zeng, Z.K.;Piao, X.S.;Wang, D.;Li, P.F.;Xue, L.F.;Salmon, Lorraine;Zhang, H.Y.;Han, X.;Liu, L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.8
    • /
    • pp.1164-1172
    • /
    • 2011
  • Two experiments were conducted to evaluate the efficacy of Trichoderma reesei derived phytase for pigs fed diets with fixed calcium to total phosphorus ratios (1.5:1). In Exp. 1, 280 weaned pigs (initial BW of $10.32{\pm}1.94$ kg) were allocated to one of five dietary treatments on the basis of weight and gender in a randomized complete block design. Treatments were the low phosphorus (0.6% Ca, 0.4% total P and 0.23% available P) diets supplemented with 0, 250, 1,000, or 2,000 FTU phytase/kg of diet and a positive control diet (PC; 0.85% Ca, 0.58% total P and 0.37% available P). The treatments were applied to seven pens with eight pigs per pen, half male and half female. In Exp. 2, six barrows fitted with ileal T-cannula (initial BW = $35.1{\pm}1.6$ kg) were assigned to three dietary treatments with a double $3{\times}3$ Latin square design. The dietary treatments were the low-phosphorus diet (0.53% Ca, 0.34% total P and 0.14% available P), the low phosphorus diet plus 1,000 FTU phytase/kg and a positive control diet (0.77% Ca, 0.50% total P and 0.30% available P). In Exp. 1, there were linear increases (p<0.01) in weight gain, phosphorus absorption, bone strength, calcium and phosphorus content of fat-free dried bone and plasma phosphorus concentrations with increasing dose rate of phytase. The performance of pigs fed the diets with 250, 1,000, or 2,000 FTU of phytase/kg did not differ from pigs fed the PC diet. Pigs fed diets with 1,000 or 2,000 FTU of phytase/kg did not differ from pigs fed the PC diet in bone characteristics. The apparent digestibility of dry matter, crude protein, ash and energy was not affected by dietary treatment. However, pigs fed the PC diet excreted more fecal phosphorus (g/d, p<0.01) and fecal phosphorus per BW gain (g/kg) than pigs fed the diets with phytase. Phytase linearly decreased (p<0.01) fecal phosphorus excreted per BW gain (g/kg), plasma calcium concentration as well as plasma and bone alkaline phosphatase activity. In Exp. 2, phytase supplementation in the low-P diet increased (p<0.05) the apparent ileal digestibility (AID) of Ca, P, leucine, lysine, phenylalanine, alanine and cysteine, tended to AID of crude protein, isoleucine, threonine, asparagine and serine. In conclusion, the novel phytase originated from Trichoderma reesei is effective in releasing Ca, P, and amino acids from corn soy based diet for pigs.

Production performances and antioxidant activities of laying hens fed Aspergillus oryzae and phytase co-fermented wheat bran

  • Huang, Chung Ming;Chuang, Wen Yang;Lin, Wei Chih;Lin, Li Jen;Chang, Sheng Chang;Lee, Tzu Tai
    • Animal Bioscience
    • /
    • v.34 no.3_spc
    • /
    • pp.371-384
    • /
    • 2021
  • Objective: Wheat bran (WB) was co-fermented with Aspergillus oryzae and phytase (Phy) to determine whether co-fermentation improve WB phosphorus and fiber utilization in Isa-brown layers. Methods: A total of 112 Isa brown layer were randomly divided into 7 treatments with 8 replicates per a treatment and 2 hens per a replicate. The treatments included basal diet (control), basal diet supplemented with 250 unit/kg Phy (control+Phy), diet with 10% WB (10% WB), diet with 5% WB and 250 unit/kg Phy (5% WB+Phy) diet with 10% WB and 250 unit/kg Phy (10% WB+Phy), diet with 5% fermented WB supplemented with molasses and phy (PCFWH) and 125 unit/kg Phy (5% PCFWH), and diet with 10% PCFWH (10% PCFWH). The intestinal microbial population, intestinal morphology, serum antioxidant enzyme activities, and excreta phosphorus content were assessed. Results: In PCFWH, spore counts, protease activity, xylanase activity, and ferulic acid were 8.50 log/g dry matter (DM), 190 unit/g DM, 120 unit/g DM, and 127 ㎍/g, respectively. Xylobiose and xylotriose were released in PCFWH, while they were not detectable in WB. Antioxidant capacity was also enhanced in PCFWH compared to WB. The 10% WB+Phy and 10% PCFWH groups produced higher egg mass, but hens fed 5% WB+Phy had the lowest amount of feed intake. Eggs from 10% PCFWH had better eggshell weight, eggshell strength, and eggshell thickness. Birds fed with 10% PCFWH also had higher serum superoxide dismutase and catalase activities. Compare to control, 10% PCFWH significantly reduced excreta phosphorus content. Conclusion: Diet inclusion of 10% PCFWH improved egg quality, antioxidant status, and excreta phosphorus content of laying hens.

Effects of Dietary Carbohydrase Enzyme Complex and Microbial Phytase Supplementation on Productivity and Nutrient Digestibility in Growing Pigs (탄수화물 분해 복합효소제와 미생물 파이테이즈의 첨가가 육성돈의 생산성 및 영양소 소화율에 미치는 영향)

  • Shim, Y.H.;Chae, B.J.;Lee, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.569-576
    • /
    • 2003
  • An experiment was conducted to investigate the effect of microbial phytase (Natuphos$^{\circledR}$) supplementation, individually and in combination with carbohydrase enzyme complex (composed of enzymes targeted to SBM dietary components such as $\alpha$-galactosides and galactomannans; ENDO-POWER$^{\circledR}$) to corn-soy basis diet with low nutrient levels on growth performance and nutrient digestibility of growing pigs. A total of 48 crossbred weaned pigs (Landrace${\times}$Yorkshire${\times}$Duroc), 29.1$\pm$0.14 kg of initial body weight, were randomly allotted to four dietary treatments, based on weight and age, according to a Randomized Complete Block Design. There were three pens per treatment and 4 pigs per pen. The dietary treatments were 1) CON (control diet with 3,380 kcal/kg of metabolizable energy, 18.96% of crude protein, 1.10% of lysine, 0.75% of calcium and 0.35% of available phosphorus), 2) LP+NTPS (CON diet with 0.15% unit lower available P levels+0.1% phytase (500 FTU/kg; Natuphos$^{\circledR}$)), 3) LEL+ENP (CON diet with 3.0% unit lower ME and lysine levels + 0.1% carbohydrase enzyme complex (ENDO-POWER$^{\circledR}$), and 4) LPEL+ENZ (CON diet with 0.15% unit lower available P levels and 3.0% unit lower ME and lysine levels+0.1% ENDO-POWER$^{\circledR}$ and 0.1% Natuphos$^{\circledR}$ (500 FTU/kg). There was no significant difference (p〉0.05) in average daily gain (ADG), average daily feed intake (ADFI) and feed conversion ratio (FCR) among dietary treatments during the whole experimental period (0 to 4 weeks). Apparent digestibility of gross energy was greater in LP+NTPS and LPEL+ENZ groups than in the LEL+ENP (p<0.05). Apparent digestibility of phosphorus was greater in LP+NTPS than in LEL+ENP (p<0.05). Dry matter excretion was lowest in LPEL+ENZ and phosphorus excretion was lowest in LP+NTPS (p<0.05). Overall, pigs fed on LPEL+ENZ group tended to have better nutrient digestibility (dry matter, gross energy, crude protein and phosphorus) than pigs fed on control group. All dietary enzyme treatment groups showed lower feed cost/body weight gain of pigs than control group. In conclusion, the results from the present study suggest that the simultaneous inclusion of phytase and carbohydrase enzyme complex to diets is advantageous with respect to reducing nutrient excretion of growing pigs and may contribute to increased economic return when added to corn-soy based growing pig diets.