• Title/Summary/Keyword: Microbial Pathogenesis

Search Result 51, Processing Time 0.029 seconds

Coaggregation between Porphyromonas gingivalis and Tannerella forsythia (Porphyromonas gingivalis와 Tannerella forsythia의 응집반응)

  • Um, Heung-Sik;Lee, Seok-Woo;Park, Jae-Hong;Nauman, R.K.
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.1
    • /
    • pp.265-272
    • /
    • 2006
  • Dental plaque, a biofilm consisting of more than 500 different bacterial species, is an etiological agent of human periodontal disease, It is therefore important to characterize interactions among periodontopathic microorganisms in order to understand the microbial pathogenesis of periodontal disease. Previous data have suggested a synergistic effect of tow major periodontal pathogens Porphyromonas gingivalis and Tannerella forsythia in the periodontal lesion. In the present study, to better understand interaction between P. gingivalis and T. forsythia, the coaggregation activity between these bacteria was characterized. The coaggregation activity was observed by a direct visual assay by mixing equal amount (1 ${\times}$ $10^9$)of T. forsythia and P. gingivaJis cells. It was found that the first aggregates began to appear after 5-10 min, and that the large aggregates completely settled within 1 h. Electron and epifluorescence microscopic studies confirmed cell-cell contact between two bacteria. The heat treatment of P. gingivalis completely blocked the activity, suggesting an involvement of a heat-labile component of P. gingivalis in the interaction. On the other hand, heat treatment of T. forsythia significantly increased the coaggregation activity; the aggregates began to appear immediately. The coaggregation activity was inhibited by addition of protease, however carbohydrates did not inhibit the activity, suggesting that coaggregation is a protein-protein interaction. The results of this study suggest that coaggregation between P. gingivalis and T. forsythia is a result of cell-cell physical contact, and that coaggregation is mediated by a heat-labile component of P. gingivalis and T. forsythia component that can be activated on heat treatment.

SCANNING ELECTRON MICROSCOPIC STUDY OF IMPLANT SURFACE AFTER Er,Cr:YSGG LASER IRRADIATION (Er,Cr:YSGG 레이저를 조사한 임플란트 표면의 주사전자현미경적 연구)

  • Jo, Pil-Kwy;Min, Seung-Ki;Kwon, Kyung-Hwan;Kim, Young-Jo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.454-469
    • /
    • 2006
  • Today, there is considerable evidence to support a cause-effect relationship between microbial colonization and the pathogenesis of implant failures. The presence of bacteria on implant surfaces may result in an inflammation of the peri-implant mucosa, and, if left untreated, it may lead to a progressive destruction of alveolar bone supporting the implant, which has been named as peri-impantitis. Several maintenance regimens and treatment strategies for failing implants have been suggested. Recently, in addition to these conventional tools, the use of different laser systems has also been proposed for treatment of peri-implant infections. As lasers can perform excellent tissue ablation with high bactericidal and detoxification effects, they are expected to be one of the most promising new technical modalities for treatment of failing implants. It is introduced that Er,Cr:YSGG laser, operating at 2780nm, ablates tissue by a hydrokinetic process that prevents temperature rise. We studied the change of the titanium implant surface under scanning electron microscopy after using Er,Cr:YSGG laser at various energies, irradiation time. In this study, Er,Cr:YSGG laser irradiation of implant fixture showed different effects according to implant surface. Er,Cr:YSGG laser in TPS surface with RBM not alter the implant surface under power setting of 4 Watt(W) and irradiation time of 30sec. But in TPS surface with $Ca_3P$ coating alter above power setting of 2W and irradiation time of 10sec. TPS surface with RBM showed microfracture in 4W, 30sec and TPS surface with $Ca_3P$ coating showed destruction of fine crystalline structure, melting in excess of 2W, 10sec. We concluded that proper power setting, air, water of each implant surface must be investigated and implant surface must be irradiated under the damaged extent.

Molecular Genetic Analysis of Behcet's Disease in Korean (한국인 베체트 환자의 분자유전학적 연구)

  • Park, Sang-Bum;Nam, Youn-Hyoung;Park, Su-Min;Lee, Sang-Hyun;Ahn, Young-Chang;Cho, Min-Ho;Kim, Jong-Gyu;Choi, Jae-Gu;Kim, Seong-Kyu;Jang, Won-Cheoul
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.6
    • /
    • pp.536-542
    • /
    • 2007
  • Behcet's disease (BD) is a chronic inflammatory disorder, involving several organs. Inflammation in the disease is thought to be mediated by cytokines derived from T-helper type 1 (Th1) lymphocytes. Although the exact pathogenesis for BD is not completely understood, it has been suggested that the disease is triggered in genetically susceptible individuals by environmental factors, such as microbial agents. It is noted that multiple genes, including MHC (major histocompatibility complex) and non-MHC genes, are implicated in the pathogenesis of BD. This study tries to determine whether HLA-B51, IL-18, SLC11A1 and TNF-α polymorphisms are associated with susceptibility to Behcet's disease in Koreans. As a results, HLA-B51 was a genetic factor with the strongest association with BD. But it is still uncertain whether this HLA molecule is directly involved in the pathogenesis of BD. Although the IL-18 gene polymorphisms were not associated with a susceptibility to BD in the Korean population, the patients carrying the GG genotype at position 137 had a higher risk of developing the ocular lesions. This study suggests that the allele 3 and the genotype allele 3 / allele 3 of 5'-promoter (GT)n polymorphism in the SLC11A1 gene may have a protective effect for the development of BD in the Korean population. There were no evidences for genetic association conferred by the TNF-α gene with respect to susceptibility to BD.

Changes of Mating Type Distribution and Fungicide-resistance of Phytophthora infestans Collected from Gangwon Province (강원지역 감자 역병균 Phytophthora infestans의 교배형 및 약제저항성 변화)

  • Park, Kyeong-Hun;Ryu, Kyoung-Yul;Yun, Jeong-Chul;Jeong, Kyu-Sik;Kim, Jeom-Soon;Kwon, Min;Kim, Byung-Sup;Cha, Byeong-Jin
    • Research in Plant Disease
    • /
    • v.16 no.3
    • /
    • pp.274-278
    • /
    • 2010
  • Potato late blight caused by Phytophthora infestans was the most constrain disease at potato cultivation areas. The mating type distribution and fungicides response of P. infestans were investigated to elucidate the changes of pathogen from Gangwon province. On the fungal isolates in 2006, 58.7% were A1 mating type and 41.3% were A2 mating type. In 2007, A1 mating type isolates increased to 93.3% and A2 mating type isolates were collected from Jinbu areas as much as 6.7%. About 234 isolates analysed for metalaxyl response, the results was resistance 73.7%, intermediate 18.8% and sensitive 7.5% in 2006. And it was resistance 59.4%, intermediate 4.0% and sensitive 36.6% in 2007. It meant that mating type distribution and fungicide response were very different over the collection sites. Minimal inhibition concentration (MIC) of dimethomorph examined with 126 isolates in 2006 and 106 isolates in 2007. MIC over $1.0\;{\mu}g/ml$ was 56.3% in 2006 and it was 3.8% in 2007. The average $EC_{50}$ value of P. infestans was $0.37\;{\mu}g/ml$ in 2006, but it decreased to $0.12\;{\mu}g/ml$ in 2007. Fungicides response and pathogenesis of P. infestans should be monitored continuously to enhance the chemical efficacy at potato fields.

Expression of Toll-like Receptor-2 on the Peripheral Blood Monocytes in Kawasaki Disease Patients (가와사끼병 환자에서 분리한 CD14양성 세포에서 Toll-like Receptor-2의 발현)

  • Hwang, Dae Hwan;Han, Jung Woo;Choi, Kyung Min;Shin, Kyung Mi;Kim, Dong Soo
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.3
    • /
    • pp.315-320
    • /
    • 2005
  • Objective : Toll like receptor(TLR) is known to be involved in innate immunity. Many microbial antigens stimulate TLR, and as a result of intracellular signal transduction, they activate nuclear factor-kB which produces diverse inflammtory cytokines. Until now, many research topics in Kawasaki disease focused on cytokine increasement. In this study, we aim to reveal TLR increasement which might be associated with initiation of inflammatory response. Methods : We obtained the peripheral blood of ten patients who were diagnosed with Kawasaki disease in Yonsei University College of Medicine from March 2003 to August 2003, as well as those of a febrile control group and the same number of a normal control group. Flow cytometry was done in all samples for quantification of TLR-2 expression in CD14 positive monocyte. And we also extracted total RNA of periphral monocyte and quantificated expression of TLR-2 mRNA by RT-PCR. Results : The expression of TLR-2 in Kawasaki disease increased significantly compared with the normal control group but not when compared with the febrile control group. And the expression decreased slightly in the subacute phase of Kawasaki disease compared with the acute phase, but this was statistically insignificant. mRNA expression of TLR-2 in peripheral blood monocyte also increased in the acute phase of Kawasaki disease. Conclusion : Expression of TLR-2 in Kawasaki disease increased when compared with the normal control group, which means that innate immunity is associated with the pathogenesis of Kawasaki disease.

Plumbagin Inhibits Expression of Virulence Factors and Growth of Helicobacter pylori (Plumbagin에 의한 헬리코박터 파이로리균의 성장 및 병원성 인자 발현 억제효과)

  • Lee, Min Ho;Woo, Hyun Jun;Park, Min;Moon, Cheol;Eom, Yong-Bin;Kim, Sa-Hyun;Kim, Jong-Bae
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.218-226
    • /
    • 2016
  • Helicobacter pylori primarily colonizes the human stomach. Infection by this bacterium is associated with various gastric diseases, including inflammation, peptic ulcer, and gastric cancer. Although there are antibiotic regimens for the eradication of H. pylori, the resistance of this species against antibiotics has been continuously increasing. The natural compound plumbagin has been reported as an antimicrobial and anticancer molecule. In this study, we analyzed the inhibitory effect of plumbagin on H. pylori strain ATCC 49503 as well as the expression of various molecules associated with H. pylori growth or virulence by immunoblotting and reverse transcription polymerase chain reaction (RT-PCR) analyses. We demonstrated the minimal inhibitory concentration of plumbagin on H. pylori through the agar dilution and broth dilution methods. Furthermore, we investigated the effect of plumbagin treatment on the expression of the RNA polymerase subunits and various virulence factors of H. pylori. Plumbagin treatment decreased the expression of RNA polymerase subunit alpha (rpoA), which is closely associated with bacterial survival. Moreover, the mRNA and protein levels of the major CagA and VacA toxins were decreased in plumbagintreated H. pylori cells. Likewise, the expression levels of urease subunit alpha (ureA) and an adhesin (alpA) were decreased by plumbagin treatment. Collectively, these results suggest that plumbagin may inhibit the growth, colonization, and pathogenesis of H. pylori by the mechanism demonstrated in this study.

THE CHANGES OF SALIVARY MICROORGANISM COMPOSITION AFTER THERAPEUTIC RADIATION FOR ORAL CANCER PATIENTS (구강암 환자에서 방사선 조사에 따른 타액의 세균학적 조성변화에 대한 연구)

  • Lee, Jong-Ho;Kim, Myung-Jin;Choung, Pill-Hoon;Choi, Jin-Young;Seo, Byoung-Moo;Song, Ro-Heun;Ahn, Kang-Min;Kim, Jong-Won;Nam, Il-Woo;Kim, Soo-Kyung
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.1
    • /
    • pp.18-23
    • /
    • 2000
  • The changes of the microorganism composition after therapeutic radiation for oral cancer patients are not well known and the long-term follow-up data are not reported. To obtain basic data for understanding of pathogenesis and prevention and treatment of dental caries and mucositis occuring after radiation therapy, 7 of the oral cancer patients presented at the Seoul National University Oral & Maxillofacial Department between 1997 and 1998 whose treatment plan included radiation therapy were recruited to investigate the changes in bacterial composition(total aerobic count, Candida, Staphylococci, Lactobacilli, S. mutans, and S. salivarius (mitis, sanguis)) of the saliva before, during, and after radiation therapy. The basic data obtained from this study on identification and composition change of the bacteria in saliva of patients treated with radiation therapy can be used (1) as a reference for deciding on the ideal anti-microbial spectrum of the oral rinsing agent to be used in patients treated with radiation therapy for malignant tumor of the head and neck region. (2) to enhance the understanding of increase of opportunistic infection after immunochemical changes of the saliva and its relation to specific bacterial infection. (3) as a reference in prescribing prophylactic antibiotics in immunodepressed patients after radiation therapy.

  • PDF

Antimicrobial and Antioxidant Activities and Inhibition of Nitric Oxide Synthesis of Oak Wood Vinegar (참나무 목초액의 항균 및 항산화 활성과 일산화질소 합성 저해연구)

  • Jung, Il-Sun;Kim, Yu-Jung;Gal, Sang-Wan;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.105-109
    • /
    • 2007
  • This study was carried out to investigate the biological effects oak wood vinegar. Antimicrobial activity was tested in five microbial species at the concentration of 5 to $50{\mu}l$ of oak wood vinegar by paper disc method. Growth of P. oleovoranse, P. vulgaris, E. coli, S. aureus and Prevotella intermedia was inhibited at a dose of as low as $50{\mu}l$ of oak wood vinegar. Antioxidant activities were measured by using DPPH radical scavenging and SOD-like activity. DPPH radical scavenging and SOD-like activities were 90% and 65% at the concentration of $25{\mu}l\;and\;50{\mu}l$ of oak wood vinegar, respectively. Stimulation of the macrophages RAW264.7 cells with lipopolysaccharide (LPS) resulted in increased production of nitric oxide (NO) in the medium. However, the oak wood vinegar showed marked inhibition of NO synthesis in a dose-dependent manner. This result suggest that oak wood vinegar plays significant role for activation of immune system in the pathogenesis of inflammatory diseases.

NLRP3 Inflammasome in Neuroinflammatory Disorders (NLRP3 인플라마좀 작용 기전 및 신경 질환에서의 역할)

  • Kim, Ji-Hee;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.237-247
    • /
    • 2021
  • Immune responses in the central nervous system (CNS) function as the host's defense system against pathogens and usually help with repair and regeneration. However, chronic and exaggerated neuroinflammation is detrimental and may create neuronal damage in many cases. The NOD-, LRR-, and pyrin domain―containing 3 (NLRP3) inflammasome, a kind of NOD-like receptor, is a cytosolic multiprotein complex that consists of sensors (NLRP3), adaptors (apoptosis-associated speck like protein containing a caspase recruitment domain, ASC) and effectors (caspase 1). It can detect a broad range of microbial pathogens along with foreign and host-derived danger signals, resulting in the assembly and activation of the NLRP3 inflammasome. Upon activation, NLRP3 inflammasome leads to caspase 1-dependent secretion of the pro-inflammatory cytokines IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. NLRP3 inflammasome is highly expressed in CNS-resident cell types, including microglia and astrocytes, and growing evidence suggests that NLRP3 inflammasome is a crucial player in the pathophysiology of several neuroinflammatory and psychiatric diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, traumatic brain injury, amyotrophic lateral sclerosis, and major depressive disorder. Thus, this review describes the molecular mechanisms of NLRP3 inflammasome activation and its crucial roles in the pathogenesis of neurological disorders.

Extracellular RNAs and Extracellular Vesicles: Inception, Current Explorations, and Future Applications

  • Perumal, Ayyappasamy Sudalaiyadum;Chelliah, Ramachandran;Datta, Saptashwa;Krishna, Jayachandran;Samuel, Melvin S.;Ethiraj, Selvarajan;Park, Chae Rin
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.535-543
    • /
    • 2020
  • In addition to the ubiquitous roles of cellular RNA in genetic regulations, gene expression and phenotypic variations in response to environmental cues and chemotactic signals, the regulatory roles of a new type of RNA called extracellular RNAs (exRNAs) are an up-and-coming area of research interest. exRNA is transported outside the cell through membrane blebs known as membrane vesicles or extracellular vesicles (EVs). EV formation is predominant and conserved among all microbial forms, including prokaryotes, eukaryotes, and archaea. This review will focus on the three major topics concerning bacterially derived exRNAs, i.e., 1) the discovery of exRNA and influence of extraneous RNA over bacterial gene regulations, 2) the known secretion mechanism for the release of exRNA, and 3) the possible applications that can be devised with these exRNA secreted by different gram-negative and gram-positive bacteria. Further, this review will also provide an opinion on exRNA- and EV-derived applications such as the species-specific exRNA markers for diagnostics and the possible roles of exRNA in probiotics and the epigenetic regulations of the gut microbiome.