• 제목/요약/키워드: Microarrays

검색결과 199건 처리시간 0.024초

면역억제제에 의한 당뇨 관련 유전자의 DNA microarray 분석 (DNA Microarrays Analysis of Gene Expression Profiles in Diabetes-related genes using Immunosuppressant)

  • 김경신;김병수
    • 혜화의학회지
    • /
    • 제21권1호
    • /
    • pp.11-21
    • /
    • 2012
  • New onset diabetes is a major complication after kidney transplantation. However, the natural course of posttransplantation diabetes mellitus (PTDM) remains unclear. The aim of this study was to demonstrate the detailed natural courses of PTDM according to the onset and persistency of hyperglycemia, and to investigate risk factors for development of different courses of PTDM in renal allograft recipients. The purpose of this study is to develop novel immune suppressants for PTDM using of action mechanism of them. The use of immunosuppressive drugs in transplanted patients is associated with the development of diabetes, possibly due to ${\beta}$-cell toxicity. To better understand the mechanisms leading to post-transplant diabetes, we investigated the actions of prolonged exposure of ${\beta}$-cells to therapeutical levels of tacrolimus (FK506) or cyclosporin A(CsA). The immunosuppressive drug cyclosporine(CsA) is a potent agent widely used after organ transplantations and various autoimmune disorders. After using CsA, some patients suffer severe complications including renal and vascular toxicity. The renal or vascular toxicity is influenced by the degree of the endothelial damage. FK506(tacrolimus) is a widely used immunosuppressive agent in the treatment of various medical conditions, including autoimmune disease, bone marrow and organ transplantations. We found some interesting clusters and confirmed the feasibility of cDNA microarray in the study of Immunosuppressant. In this study, we investigated gene expression patterns induced by Immunosuppressant in RIN-m5F of rat insulinoma cell line. Gene expressions evaluated using cDNA microarry in two clusters were increased or decreased. this study provides comprehensive comparison of the patterns of gene expression changes induced by CsA and FK506 in ${\beta}$-cells. This study could establish that the mode of action mechanism by which currently used insulin inhibitors inducing PTDM could be elucidated at least in part, which raises the possibility that novel immune suppressive PTDM can be developed. The molecular biological study on PTDM will also contribute the progress in diabetes research field as well as in that of PTDM.

Loss of ARID1A Expression in Gastric Cancer: Correlation with Mismatch Repair Deficiency and Clinicopathologic Features

  • Kim, Kyung-Ju;Jung, Hae Yoen;Oh, Mee-Hye;Cho, Hyundeuk;Lee, Ji-Hye;Lee, Hyun Ju;Jang, Si-Hyong;Lee, Moon Soo
    • Journal of Gastric Cancer
    • /
    • 제15권3호
    • /
    • pp.201-208
    • /
    • 2015
  • Purpose: The AT-rich interactive domain 1A (ARID1A ) gene encodes BRG1-associated factor 250a, a component of the SWItch/Sucrose NonFermentable chromatin remodeling complex, which is considered a tumor suppressor in many tumors. We aimed to investigate the prognostic significance of ARID1A expression in gastric cancers and explore its relationship with clinicopathologic parameters such as mismatch repair protein expression. Materials and Methods: Four tissue microarrays were constructed from 191 resected specimens obtained at Soonchunhyang University Cheonan Hospital from 2006 to 2008. Nuclear expression of ARID1A was semiquantitatively assessed and binarized into retained and lost expression. Results: Loss of ARID1A expression was observed in 62 cases (32.5%). This was associated with more frequent vascular invasion (P=0.019) and location in the upper third of the stomach (P=0.001), and trended toward more poorly differentiated subtypes (P=0.054). ARID1A loss was significantly associated with the mismatch repair-deficient phenotype (P=0.003). ARID1A loss showed a statistically significant correlation with loss of MLH1 (P=0.001) but not MSH2 expression (P=1.000). Kaplan-Meier survival analysis showed no statistically significant difference in overall survival; however, patients with retained ARID1A expression tended to have better overall survival than those with loss of ARID1A expression (P=0.053). In both mismatch repair-deficient and mismatch repair-proficient groups, survival analysis showed no differences related to ARID1A expression status. Conclusions: Our results demonstrated that loss of ARID1A expression is closely associated with the mismatch repair-deficient phenotype, especially in sporadic microsatellite instability-high gastric cancers.

Comparison of Cytokine Gene Induction in RAW 264.7 Cells by Porphyromonas gingivalis and Escherichia coli Lipopolysaccharide

  • Lee, Young-Hwa;Jeong, So-Yeon;Na, Hee-Sam;Jeong, Sung-Hee;Park, Hae-Ryoun;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제35권3호
    • /
    • pp.121-128
    • /
    • 2010
  • Porphyromonas gingivalis lipopolysaccharide (Pg LPS) is an important virulence factor in chronic periodontitis. The aim of this study was to compare the expression of inflammatory cytokine genes in Escherichia coli LPS (Ec LPS) and Pg LPS-stimulated mouse macrophage RAW 264.7 cells. Cells were treated with Ec LPS and Pg LPS for 18 hours, and the cytokine gene expression profile was assessed using microarrays and confirmed by real-time PCR. Microarray analysis showed that both types of LPS induced a significant increase in the expression of IL-$17{\beta}$, IL-2, Ccl4, Cxcl2 and $TNF{\alpha}$ compared with the control. However, LT-b was up-regulated by Pg LPS but not by Ec LPS. Real-time PCR analysis of these genes showed similar results for LT-b, Ccl4, Cxcl2, and TNF-$\alpha$ but found that IL-$17{\beta}$ and IL-2 were upregulated by Pg LPS but not by Ec LPS. These data indicate that Pg LPS stimulates the transcription of IL-$17{\beta}$, IL-2, Ccl4, Cxcl2, LT-b, and $TNF{\alpha}$, all of which may be involved in the pathogenesis of chronic periodontitis.

Profiling of Gene Expression According to Cancer Stage in Clear Cell Type of Renal Cell Carcinoma

  • Won, Nam-Hee;Ryu, Yeon-Mi;Kim, Ki-Nam;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • 제1권1호
    • /
    • pp.62-71
    • /
    • 2005
  • For toxicity model in the kidney, renal cell carcinoma (RCC) is one of the most important model to assess the structural and functional alterations. Most RCCs are sporadic, and environmental agents are suspected to play a role in the etiology of the disease. In this study, we discovered novel evidence for previously unknown gene expression patterns related to progression according to cancer stage in RCC. Four clear cell RCC tissue samples along with five corresponding patient-matched normal kidney tissue samples were obtained from patients undergoing partial or radical nephrectomy. To examine the difference of gene expression profile in clear cell RCC, radioactive cDNA microarrays were used to evaluate changes in the expression of 1,152 genes in a total. Using $^{33}P-labeled$ probes, this method provided highly sensitive gene expression profiles including drug metabolism, and cellular signaling. 29 genes were identified with expression levels that differed by more than 2.0 value of z-ratio, compared with that in control. Whereas expression of 38 genes were decreased by less than-2.0 value of z-ratio. In conclusion, this study has identified 67 gene expression alterations in clear-cell type of RCC. Most notably, genes involved in cell growth were up-regulated in stage I more than stage III whereas genes involved in signal transduction were down-regulated in which both stage I and stage III. The identified alteraions of gene expression will likely give in sight in to clear cell RCC and tumor progression.

Eco-toxicogenomics Research with Fish

  • Park, Kyeong-Seo;Kim, Han-Na;Gu, Man-Bock
    • Molecular & Cellular Toxicology
    • /
    • 제1권1호
    • /
    • pp.17-25
    • /
    • 2005
  • There are some critical drawbacks in the use of biomarkers for a global assessment of the toxicological impacts many chemicals and environmental pollutants have, primarily due to an individual biomarker's specificity for an explicit chemical or toxicant. In other words, the biomarker-based assessment methodology used to analyze toxicological effects lacks a high-throughput capability. Therefore, eco-toxicogenomics, or the study of toxicogenomics with organisms present within a given environmental locale, has recently been introduced with the advent of the so-called "-omics" era, which began with the creation of microarray technologies. Fish are comparable with humans in their toxicological responses and thus data from toxicogenomic studies performed with fish could be applied, with appropriate tools and implementation protocols, to the evaluation of environments where human or animal health is of concern. At present, there have been very active research streams for developing expression sequence tag (EST) databases (DBs) for zebra fish and rainbow trout. Even though few reports involve toxicogenomic studies with fish, a few groups have successfully fabricated and used cDNA microarrays or oligo DNA chips when studying the toxicological impacts of hypoxia or some toxicants with fish. Furthermore, it is strongly believed that this technology can also be implemented with non-model fish. With the standardization of DNA microarray technologies and ample progress in bioinformatics and proteomic technologies, data obtained from DNA microarray technologies offer not only multiple biomarker assays or an analysis of gene expression profiles, but also a means of elucidating gene networking, gene-gene relations, chemical-gene interactions, and chemical-chemical relationships. Accordingly, the ultimate target of eco-toxicogenomics should be to predict and map the pathways of stress propagation within an organism and to analyze stress networking.

다중 역전사 중합효소 연쇄 반응(Multiplex RT-PCR)을 이용한 인간배아 줄기세포 및 유도만능 줄기세포의 효과적인 분화 양상 조사 (Effective Application of Multiplex RT-PCR for Characterization of Human Embryonic Stem Cells/ Induced Pluripotent Stem Cells)

  • 김정모;조윤정;손온주;홍기성;정형민
    • Reproductive and Developmental Biology
    • /
    • 제35권1호
    • /
    • pp.1-8
    • /
    • 2011
  • Techniques to evaluate gene expression profiling, such as sufficiently sensitive cDNA microarrays or real-time quantitative PCR, are efficient methods for monitoring human pluripotent stem cell (hESC/iPSC) cultures. However, most of these high-throughput tests have a limited use due to high cost, extended turn-around time, and the involvement of highly specialized technical expertise. Hence, there is an urgency of rapid, cost-effective, robust, yet sensitive method development for routine screening of hESCs/hiPSCs. A critical requirement in hESC/hiPSC cultures is to maintain a uniform undifferentiated state and to determine their differentiation capacity by showing the expression of gene markers representing all three germ layers, including ectoderm, mesoderm, and endoderm. To quantify the modulation of gene expression in hESCs/hiPSC during their propagation, expansion, and differentiation via embryoid body (EB) formation, we developed a simple, rapid, inexpensive, and definitive multimarker, semiquantitative multiplex RT-PCR platform technology. Among the 9 gene primers tested, 5 were pluripotent markers comprising set 1, and 3 lineage-specific markers were combined as set 2, respectively. We found that these 2 sets were not only effective in determining the relative differentiation in hESCs/hiPSCs, but were easily reproducible. In this study, we used the hES/hiPS cell lines to standardize the technique. This multiplex RT-PCR assay is flexible and, by selecting appropriate reporter genes, can be designed for characterization of different hESC/hiPSC lines during routine maintenance and directed differentiation.

Dysregulated Expression Profiles of MicroRNAs of Experimentally Induced Cerebral Aneurysms in Rats

  • Lee, Hyung-Jin;Yi, Jin-Seok;Lee, Hong-Jae;Lee, Il-Woo;Park, Ki-Cheol;Yang, Ji-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • 제53권2호
    • /
    • pp.72-76
    • /
    • 2013
  • Objective : Cerebral aneurysm (CA) is an important acquired cerebrovascular disease that can cause catastrophic results. MicroRNAs (miRNAs) are small non-coding RNAs, playing essential roles in modulating basic physiologic and pathological processes. Currently, evidences have been established about biologic relationship between miRNAs and abdominal aortic aneurysms. However, biologic roles of miRNAs in CA formation have not been explained yet. We employed microarray analysis to detect and compare miRNA expression profiles in late stage of CA in rat model. Methods : Twenty-six, 7-week-old male Sprague-Dawley rats underwent a CA induction procedure. The control animals (n=11) were fed a normal diet, and the experimental animals (n=26) were fed a normal diet with 1% normal saline for 3 months. Then, the rats were sacrificed, their cerebral arteries were dissected, and the five regions of aneurysmal dilation on the left posterior communicating artery were cut for miRNA microarrays analysis. Six miRNAs (miRNA-1, miRNA-223, miRNA-24-1-5p, miRNA-551b, miRNA-433, and miRNA-489) were randomly chosen for validation using real-time quantitative PCR. Results : Among a set of differentially expressed miRNAs, 14 miRNAs were over-expressed more than 200% and 6 miRNAs were down-expressed lower than 50% in the CA tissues. Conclusion : The results show that miRNAs might take part in CA formation probably by affecting multiple target genes and signaling pathways. Further investigations to identify the exact roles of these miRNAs in CA formation are required.

자하거(紫河車) 약침액(藥鍼液)이 Lipopolysaccharide로 처리된 RAW 264.7 대식세포주(大食細胞柱)의 유전자(遺傳子) 발현(發顯)에 미치는 영향(影響) (Microarray Analysis of Gene Expression in Raw 264.7 Cells Treated with Hominis Placenta Herbal-Acupuncture Solution)

  • 장현석;이경민;임성철;엄동명;서정철
    • 한국한의학연구원논문집
    • /
    • 제12권3호통권18호
    • /
    • pp.131-141
    • /
    • 2006
  • Hominis Placenta has a broad array of clinical applications in Korean medicine, including treatment of inflammatory conditions such as rheumatoid arthritis. The purpose of this study is to explore the global gene expression profiles in human RAW 264.7 cell lines treated with Hominis Placenta herbal-acupuncture solution (HPHAS) using microarray analysis. The RAW 264.7 cells were treated with lipopolysaccharide (LPS), HPHAS, or both. Of the 8,170 genes profiled in this study, with a cut-off level of two-fold change in the expression, 72 genes (CTD1, regulating synaptic membrane exocytosis 2, etc.) were upregulated and 135 genes(splicing factor, arginine/serine-rich 1, actinin, alpha 1, etc.) downregulated following LPS treatment. One gene (acrosin) was upregulated and 12 genes (phospholipase A2, group IB, neurofilament, heavy polypeptide 200kDa, etc.) were downregulated following HPHAS treatment. Eleven genes (RAB27A, member RAS oncogene family, eosinophil peroxidase, etc.) were upregulated and 16 genes (V-maf musculoaponeurotic fibrosarcoma oncogene homolog G (avian), RW1 protein, etc.) were downregulated following co-stimulation of HPHAS and LPS. It is thought that microarrays will play an ever-growing role in the advance of our understanding of the pharmacological actions of HPHAS in the treatment of arthritis. Further studies, however, are required to concretely prove the effectiveness of HPHAS.

  • PDF

The future of bioinformntics

  • Gribskov, Michael
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
    • /
    • pp.1-1
    • /
    • 2003
  • It is clear that computers will play a key role in the biology of the future. Even now, it is virtually impossible to keep track of the key proteins, their names and associated gene names, physical constants(e.g. binding constants, reaction constants, etc.), and hewn physical and genetic interactions without computational assistance. In this sense, computers act as an auxiliary brain, allowing one to keep track of thousands of complex molecules and their interactions. With the advent of gene expression array technology, many experiments are simply impossible without this computer assistance. In the future, as we seek to integrate the reductionist description of life provided by genomic sequencing into complex and sophisticated models of living systems, computers will play an increasingly important role in both analyzing data and generating experimentally testable hypotheses. The future of bioinformatics is thus being driven by potent technological and scientific forces. On the technological side, new experimental technologies such as microarrays, protein arrays, high-throughput expression and three-dimensional structure determination prove rapidly increasing amounts of detailed experimental information on a genomic scale. On the computational side, faster computers, ubiquitous computing systems, high-speed networks provide a powerful but rapidly changing environment of potentially immense power. The challenges we face are enormous: How do we create stable data resources when both the science and computational technology change rapidly? How do integrate and synthesize information from many disparate subdisciplines, each with their own vocabulary and viewpoint? How do we 'liberate' the scientific literature so that it can be incorporated into electronic resources? How do we take advantage of advances in computing and networking to build the international infrastructure needed to support a complete understanding of biological systems. The seeds to the solutions of these problems exist, at least partially, today. These solutions emphasize ubiquitous high-speed computation, database interoperation, federation, and integration, and the development of research networks that capture scientific knowledge rather than just the ABCs of genomic sequence. 1 will discuss a number of these solutions, with examples from existing resources, as well as area where solutions do not currently exist with a view to defining what bioinformatics and biology will look like in the future.

  • PDF

Analysis of Disease Progression-Associated Gene Expression Profile in Fibrillin-1 Mutant Mice: New Insight into Molecular Pathogenesis of Marfan Syndrome

  • Kim, Koung Li;Choi, Chanmi;Suh, Wonhee
    • Biomolecules & Therapeutics
    • /
    • 제22권2호
    • /
    • pp.143-148
    • /
    • 2014
  • Marfan syndrome (MFS) is a dominantly inherited connective tissue disorder caused by mutations in the gene encoding fibrillin-1 (FBN1) and is characterized by aortic dilatation and dissection, which is the primary cause of death in untreated MFS patients. However, disease progression-associated changes in gene expression in the aortic lesions of MFS patients remained unknown. Using a mouse model of MFS, FBN1 hypomorphic mouse (mgR/mgR), we characterized the aortic gene expression profiles during the progression of the MFS. Homozygous mgR mice exhibited MFS-like phenotypic features, such as fragmentation of elastic fibers throughout the vessel wall and were graded into mgR1-4 based on the pathological severity in aortic walls. Comparative gene expression profiling of WT and four mgR mice using microarrays revealed that the changes in the transcriptome were a direct reflection of the severity of aortic pathological features. Gene ontology analysis showed that genes related to oxidation/reduction, myofibril assembly, cytoskeleton organization, and cell adhesion were differentially expressed in the mgR mice. Further analysis of differentially expressed genes identified several candidate genes whose known roles were suggestive of their involvement in the progressive destruction of aorta during MFS. This study is the first genome-wide analysis of the aortic gene expression profiles associated with the progression of MFS. Our findings provide valuable information regarding the molecular pathogenesis during MFS progression and contribute to the development of new biomarkers as well as improved therapeutic strategies.