• 제목/요약/키워드: Microarray benzo[a]pyrene (BaP)

검색결과 2건 처리시간 0.014초

Heterologous Microarray Hybridization Used for Differential Gene Expression Profiling in Benzo[a]pyrene-exposed Marine Medaka

  • Woo, Seon-Ock;Won, Hyo-Kyoung;Jeon, Hye-Young;Kim, Bo-Ra;Lee, Taek-Kyun;Park, Hong-Seog;Yum, Seung-Shic
    • Molecular & Cellular Toxicology
    • /
    • 제5권4호
    • /
    • pp.283-290
    • /
    • 2009
  • Differential gene expression profiling was performed in the hepatic tissue of marine medaka fish (Oryzias javanicus) after exposure to benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), by heterologous hybridization using a medaka cDNA microarray. Thirty-eight differentially expressed candidate genes, of which 23 were induced and 15 repressed (P<0.01), were identified and found to be associated with cell cycle, development, endocrine/reproduction, immune, metabolism, nucleic acid/protein binding, signal transduction, or non-categorized. The presumptive physiological changes induced by BaP exposure were identified after considering the biological function of each gene candidate. The results obtained in this study will allow future studies to assess the molecular mechanisms of BaP toxicity and the development of a systems biology approach to the stress biology of organic chemicals.

Screening of Ecotoxicant Responsive Genes and Expression Analysis of Benzo[a]pyrene-exposed Rockfish (Sebastes schlgeli)

  • Yum, Seung-Shic;Woo, Seon-Ock;Lee, Taek-Kyun
    • Molecular & Cellular Toxicology
    • /
    • 제2권2호
    • /
    • pp.114-119
    • /
    • 2006
  • Benzo[a]pyrene is a representative ecotoxicant in marine environment and a model compound of polycyclic aromatic hydrocarbons, which has an ability to bioaccumulate in aquatic organisms. This study aimed to identify molecular biomarkers suitable for assessing environmental pollution using a microarray technique. We examined the effects of benzo[a]pyrene on gene expressions in the rockfish, Sebastes schlegeli. We constructed the subtractive cDNA library with hepatic RNA from benzo[a]pyrene-exposed and non-exposed control fish. From the library 10,000 candidate clones were selected randomly and cDNA microarray was constructed. We determined benzo[a]pyrene-responsive genes using a high-density microarray. Statistical analysis showed that approximately 400 genes are significantly induced or reduced by benzo[a]pyrene treatment ($2\;{\mu}m$). Especially gene expression changes of 4 candidate clones among the up- or down-regulated genes were investigated in 6, 12 and 24 hr BaP-exposed fish groups. Many methods have been developed to monitor marine environmental status, which depend on quantifying the levels of the toxic components in polluted seawater or on ecological accessing, such as species diversity or richness. However, those methods could not provide information on physiological or genetic changes induced by such environmental stresses. Comparing with the conventional methods, these data will propose that benzo[a]pyrene-responsive genes can be useful for biological risk assessment of polycyclic aromatic hydrocarbons on marine organism at molecular level.