• 제목/요약/키워드: Microarray assay

검색결과 122건 처리시간 0.03초

Molecular Prognostic Profile of Egyptian HCC Cases Infected with Hepatitis C Virus

  • Zekri, Abdel-Rahman N.;Hassan, Zeinab K.;Bahnassy, Abeer A.;Sherif, Ghada M.;ELdahshan, Dina;Abouelhoda, Mohamed;Ali, Ahmed;Hafez, Mohamed M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5433-5438
    • /
    • 2012
  • Background: Hepatocellular carcinoma (HCC) is a common and aggressive malignancy. Despite of the improvements in its treatment, HCC prognosis remains poor due to its recurrence after resection. This study provides complete genetic profile for Egyptian HCC. Genome-wide analyses were performed to identify the predictive signatures. Patients and Methods: Liver tissue was collected from 31 patients with diagnosis of HCC and gene expression levels in the tumours and their adjacent non-neoplastic tissues samples were studied by analyzing changes by microarray then correlate these with the clinico-pathological parameters. Genes were validated in an independent set by qPCR. The genomic profile was associated with genetic disorders and cancer focused on gene expression, cell cycle and cell death. Molecular profile analysis revealed cell cycle progression and arrest at G2/M, but progression to mitosis; unregulated DNA damage check-points, and apoptosis. Result: Nine hundred fifty eight transcripts out of the 25,000 studied cDNAs were differentially expressed; 503 were up-regulated and 455 were down-regulated. A total of 19 pathways were up-regulated through 27 genes and 13 pathways were down-regulated through 19 genes. Thirty-seven genes showed significant differences in their expression between HCC cases with high and low Alpha Feto Protein ($AFP{\geq}600$ IU/ml). The validation for the microarray was done by real time PCR assay in which PPP3CA, ATG-5, BACE genes showed down-regulation and ABCG2, RXRA, ELOVL2, CXR3 genes showed up-regulation. cDNA microarrays showed that among the major upregulated genes in HCC are sets. Conclusion: The identified genes could provide a panel of new diagnostic and prognostic aids for HCC.

야관문(夜關門)의 포도당 독성에 대한 세포 보호 효과 (Cytoprotective Effect of Lespedeza Cuneata Extract on Glucose Toxicity)

  • 최정식;조충식;김철중
    • 대한한의학회지
    • /
    • 제31권4호
    • /
    • pp.79-100
    • /
    • 2010
  • Objective: Production of ROS from glucose toxicity results in injury of pancreatic $\beta$-cells in diabetes models. This study was undertaken to examine the influence of Lespedeza Cuneata extract (LCE) on cytoprotective effects on glucose toxicity, insulin secretion and gene expression in RIN-m5F cells. Methods: First, we measured LCE's antioxidant activity by DPPH free radical-scavenging activity and SOD activity. After the various concentrations of LCE were added to the RIN-m5F cells, we measured cell viability with glucose stimulation by MTT assay and glucose-stimulated insulin secretion. We analyzed gene expression with Agilent whole mouse genome 44K oligo DNA microarray and searched for related pathways in KEGG (Kyoto Encyclopedia of Genes and Genomes). Lastly we measured INS-1, INS-2, INS-R, IRS-1, IRS-2, IRS-3, GLP-1R, and GLP-2R mRNA expression by real time RT-PCR. Results: Free radical-scavenging activity, SOD activity and insulin secretion increased dependent on LCE concentration, but LCE did not show considerable cytoprotective effect on RIN-m5F cells. More than twice expressed gene was 6362 in Oligo DNA chip. In KEGG, the most related pathway was the metabolic pathway. In the insulin signaling pathway, up expressed genes were Irs1, Mapk8, Akt1, and Lipe and down expressed genes were Rhoq, Fbp2, Prkar2b, Gck, and Prkag1. In real time RT-PCR, IRS-2, and IRS-3 expression increased significantly compared to the control group on LCE $12{\mu}g/m{\ell}$ concentration and GCK expression decreased significantly compared to the control group. Conclusions: These results show that LCE encourages insulin secretion and insulin metabolism by complicated gene mechanisms. Further mechanism study and clinical study seem to be necessary about Lespedeza Cuneata.

Expression Profiles and Pathway Analysis in HEK 293 T Cells Overexpressing HIV-1 Tat and Nucleocapsid Using cDNA Microarray

  • Park, Seong-Eun;Lee, Min-Joo;Yang, Moon-Hee;Ahn, Ka-Young;Jang, Soo-In;Suh, Young-Ju;Myung, Hee-Joon;You, Ji-Chang;Park, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.154-161
    • /
    • 2007
  • Human immunodeficiency virus type 1 (HIV-1) infections are responsible for a substantial number of deaths annually and represent a significant threat to public health. According to the latest study, the Tat (Transactivator of transcription) protein is essential in transcription and replication of viral genes, and is among the early expression genes involved in the life cycle of HIV. The virion NC (nucleocapsid) plays an important role in early mRNA expression and contributes to the rapid viral replication that occurs during HIV-1 infection. Therefore, we attempted to elucidate the relationship between the Tat protein and nucleocapsid protein. In a comparison of two independently prepared and hybridized samples, flag NC overexpressed HEK 293T cells and pTat overexpressed HEK 293T cells, and hybridization showed the differences in expression in each case. Among the microarray results confirmed with real-time reverse transcriptase assay, twelve genes were identified to be involved according to their gene expression profiles. Of approximately 8,208 human genes that were analyzed, we monitored candidate genes that might have been related to NC and Tat genes from gene expression profiles. Additionally, the pathways could be viewed and analyzed through the use of Pathway Studio software. The pathways from the gene list were built and paths were found among the molecules/cell objects/processes by the curation method.

Differentially Expressed Genes by Methylmercury in Neuroblastoma cell line using suppression subtractive hybridization (SSH) and cDNA Microarray

  • Kim, Youn-Jung;Chang, Suk-Tai;Yun, Hye-Jung;Ryu, Jae-Chun
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 춘계학술대회
    • /
    • pp.187-187
    • /
    • 2003
  • Methylmercury (MeHg), one of the heavy metal compounds, can cause severe damage to the central nervous system in humans. Many reports have shown that MeHg is poisonous to human body through contaminated foods and has released into the environment. Despite many studies on the pathogenesis of MeHg-induced central neuropathy, no useful mechanism of toxicity has been established so far. In this study, two methods, cDNA Microarray and SSH, were performed to assess the expression profile against MeHg and to identify differentially expressed genes by MeHg in neuroblastoma cell line. TwinChip Human-8K (Digital Genomics) was used with total RNA from SH-SY5Y (human neuroblastoma cell line) treated with solvent (DMSO) and 6.25 uM (IC50) MeHg. And we performed forward and reverse SSH method on mRNA derived from SH-SY5Y treated with DMSO and MeHg (6.25 uM). Differentially expressed cDNA clones were sequenced and were screened by dot blot and ribonuclease protection assay to confirm that individual clones indeed represent differentially expressed genes. These sequences were identified by BLAST homology search to known genes or expressed sequence tags (ESTs). Analysis of these sequences may provide an insight into the biological effects of MeHg in the pathogenesis of neurodegenerative disease and a possibility to develop more efficient and exact monitoring system of heavy metals as environmental pollutants.

  • PDF

Changes in Gene Expression in the Rat Hippocampus after Focal Cerebral Ischemia

  • Chung, Jun-Young;Yi, Jae-Woo;Kim, Sung-Min;Lim, Young-Jin;Chung, Joo-Ho;Jo, Dae-Jean
    • Journal of Korean Neurosurgical Society
    • /
    • 제50권3호
    • /
    • pp.173-178
    • /
    • 2011
  • Objective : The rat middle cerebral artery thread-occlusion model has been widely used to investigate the pathophysiological mechanisms of stroke and to develop therapeutic treatment. This study was conducted to analyze energy metabolism, apoptotic signal pathways, and genetic changes in the hippocampus of the ischemic rat brain. Methods : Focal transient cerebral ischemia was induced by obstructing the middle cerebral artery for two hours. After 24 hours, the induction of ischemia was confirmed by the measurement of infarct size using 2,3,5-triphenyltetrazolium chloride staining. A cDNA microarray assay was performed after isolating the hippocampus, and was used to examine changes in genetic expression patterns. Results : According to the cDNA microarray analysis, a total of 1,882 and 2,237 genes showed more than a 2-fold increase and more than a 2-fold decrease, respectively. When the genes were classified according to signal pathways, genes related with oxidative phosphorylation were found most frequently. There are several apoptotic genes that are known to be expressed during ischemic brain damage, including Akt2 and Tnfrsf1a. In this study, the expression of these genes was observed to increase by more than 2-fold. As energy metabolism related genes grew, ischemic brain damage was affected, and the expression of important genes related to apoptosis was increased/decreased.Conclusion : Our analysis revealed a significant change in the expression of energy metabolism related genes (Atp6v0d1, Atp5g2, etc.) in the hippocampus of the ischemic rat brain. Based on this data, we feel these genes have the potential to be target genes used for the development of therapeutic agents for ischemic stroke.

Establishment and characterization of bortezomib-resistant U266 cell line: Constitutive activation of NF-κB-mediated cell signals and/or alterations of ubiquitylation-related genes reduce bortezomib-induced apoptosis

  • Park, Juwon;Bae, Eun-Kyung;Lee, Chansu;Choi, Jee-Hye;Jung, Woo June;Ahn, Kwang-Sung;Yoon, Sung-Soo
    • BMB Reports
    • /
    • 제47권5호
    • /
    • pp.274-279
    • /
    • 2014
  • Bortezomib has been known as the most promising anti-cancer drug for multiple myeloma (MM). However, recent studies reported that not all MM patients respond to bortezomib. To overcome such a stumbling-block, studies are needed to clarify the mechanisms of bortezomib resistance. In this study, we established a bortezomib-resistant cell line (U266/velR), and explored its biological characteristics. The U266/velR showed reduced sensitivity to bortezomib, and also showed cross-resistance to the chemically unrelated drug thalidomide. U266/velR cells had a higher proportion of CD138 negative subpopulation, known as stem-like feature, compared to parental U266 cells. U266/velR showed relatively less inhibitory effect of prosurvival NF-${\kappa}B$ signaling by bortezomib. Further analysis of RNA microarray identified genes related to ubiquitination that were differentially regulated in U266/velR. Moreover, the expression level of CD52 in U266 cells was associated with bortezomib response. Our findings provide the basis for developing therapeutic strategies in bortezomib-resistant relapsed and refractory MM patients.

The High Expressed Serum Soluble Neural Cell Adhesion Molecule, a High Risk Factor Indicating Hepatic Encephalopathy in Hepatocelular Carcinoma Patients

  • Liu, Tian-Hua;Guo, Kun;Liu, Ri-Qiang;Zhang, Shu;Huang, Zhuo-Hui;Liu, Yin-Kun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권8호
    • /
    • pp.3131-3135
    • /
    • 2015
  • Objective: To investigate whether the expression of serum soluble neural cell adhesion molecule (sNCAM) is associated with hepatic encephalopathy (HE) in hepatocelular carcinoma (HCC) patients. Materials and Methods: The Oncomine Cancer Microarray database was used to determine the clinical relevance of NCAM expression in different kinds of human cancers. Sera from 75 HCC cases enrolled in this study were assessed for expression of sNCAM by enzyme linked immunosorbent assay (ELISA). Results: Dependent on the Oncomine Cancer Microarray database analysis, NCAM was down regulated in 10 different kinds of cancer, like bladder cancer, brain and central nervous system cancer, while up-regulated in lung cancer, uterine corpus leiomyoma and sarcoma, compared to normal groups. Puzzlingly, NCAM expression demonstrated no significant difference between normal and HCC groups. However, we found by quantitative ELISA that the level of sNCAM in sera from HCC patients with HE ($347.4{\pm}151.9ng/ml$) was significantly more up-regulated than that in HCC patients without HE ($260.3{\pm}104.2ng/ml$), the p-value being 0.008. sNCAM may be an important risk factor of HE in HCC patients, the correlation coefficients was 0.278 (P<0.05) on rank correlation analysis. Conclusions: This study highlights that up-regulated level of serum sNCAM is associated with HE in HCC patients and suggests that the high expression can be used as an indicator.

Amygdalin Modulates Cell Cycle Regulator Genes in Human Chronic Myeloid Leukemia Cells

  • Park, Hae-Jeong;Baik, Haing-Woon;Lee, Seong-Kyu;Yoon, Seo-Hyun;Zheng, Long-Tai;Yim, Sung-Vin;Hong, Seon-Pyo;Chung, Joo-Ho
    • Molecular & Cellular Toxicology
    • /
    • 제2권3호
    • /
    • pp.159-165
    • /
    • 2006
  • To determine the anticancer effect of D-amygdalin (D-mandelinitrole-${\beta}$-D-gentiobioside) in human chronic myeloid leukemia cells K562, we profiled the gene expression between amygdalin treatment and control groups. Through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of D-amygdalin was $57.79{\pm}1.83%$ at the concentration of 5 mg/mL for 24 h. We performed cDNA microarray analysis and compared the gene expression profiles between D-amygdalin (5 mg/mL, 24 h) treatment and control groups. Among the genes changed by D-amygdalin, we paid attention to cell cycle-related genes, and particularly cell cycle regulator genes; because arrest of cell cycle processing was ideal tactic in remedy for cancer. In our data, expressions of cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B), ataxia telangiectasia mutated (includes complementation groups A, C, and D) (ATM), cyclin-dependent kinase inhibitor 1C (p57, Kip2) (CDKN1C), and CHK1 checkpoint homolog (CHEK1, formally known as CHK1) were increased, while expressions of cyclin-dependent kinase 2 (CDK2), cell division cycle 25A (CDC25A), and cyclin E1 (CCNE1) were decreased. The pattern of these gene expressions were confirmed through RT-PCR. Our results showed that D-amygdalin might control cell cycle regulator genes and arrest S phase of cell cycle in K562 cells as the useful anticancer drug.

L-glutamine:D-fructose-6-phosphate Aminotransferase as a Key Protein Linked to Multidrug Resistance in E. coli KD43162

  • Lee, Sung-Eun;Jung, Tae-Jeon;Park, Byeoung-Soo;Kim, Byung-Woo;Lee, Eun-Woo;Kim, Hye Jin;Yum, Jong Hwa
    • Journal of Applied Biological Chemistry
    • /
    • 제58권3호
    • /
    • pp.227-232
    • /
    • 2015
  • A microarray study has been employed to understand changes of gene expression in E. coli KD43162 resistant to ampicillin, ampicillin-sulbactam, piperacillin, piperacillin-tazobactam, cefazolin, cefepime, aztreonam, imipenem, meropenem, gentamicin, tobramycin, ciprofloxacin, levofloxacin, moxifloxacin, fosfomycin, and trimethoprim-sulfamethoxazole except for amikacin using disk diffusion assay. Using Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and MALDI-TOF MS analyses, 36 kDa of outer membrane proteins (OMPs) was found to be deleted in the multidrug resistant E. coli KD 43162. Microarray analysis was used to determine up- and down-regulated genes in relation to multidrug resistant E. coli KD43162. Among the up-regulated genes, these genes were corresponded to express the proteins as penicillin-binding proteins (PBPs), tartronate semialdehyde reductase, ethanolamine utilization protein, shikimate kinase I, allantoinase, predicted SAM-dependent methyltransferase, L-glutamine: D-fructose-6-phosphate aminotransferase (GFAT), phospho-glucosamine mutase, predicted N-acetylmannosamine kinase, and predicted N-acetylmannosamine-6-P epimerase. Up-regulation of PBPs, one of primary target sites of antibiotics, might be responsible for the multidrug resistance in E. coli with increasing amount of target sites. Up-regulation of GFAT enzyme may be related to the up-regulation of PBPs because GFAT produces N-acetylglucosamine, a precursor of peptidoglycans. One of GFAT inhibitors, azaserine, showed a potent inhibition on the growth of E. coli KD43162. In conclusion, up-regulation of PBPs and GFATs with the loss of 36 kDa OMP refers the multidrug resistance in E. coli KD 43162.