• Title/Summary/Keyword: Microalgal food

Search Result 38, Processing Time 0.028 seconds

The Activities and Characteristics of Algicidal Bacteria in Chindong Bay (진동만의 살조세균의 동태와 살조 특성)

  • KIM Mu Chan;YU Hong Sik;OK Mi Sun;KIM Chang Hoon;CHANG Dong Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.3
    • /
    • pp.359-367
    • /
    • 1999
  • For investigating the activities of algicidal bacteria, the variations of algicidal bacterial population and chlorophyll-a were checked weekly in Chindong Bay, Korea from May to July, 1998. For identifying their killing characteristics, three strains were selected from the isolated algicidal bacteria. The density of algicidal bacteria kept changing in the range of $6.0\times10^1$ to $6.4\times10^5$ cell $\ell^{-1}$. The density flux of algicidal bacteria coincided with that of chlorophyll-a by a week of lag time. Three algicidal bacteria isolated from field strains, H519S5-4, H605S5-15 and H605S5-22, were investigated in nine microalgal species, Heterosigma akashiwo, Chattonella sp. (Raphidlphyceae), Gymnodinium catenatum, Gyrodinium impudicum, Cochlodinium polyklikoides (Dinophyceae), Chaetoceros sp., Coscinodiscus granii, Ditylum brightwellii, Thalassiosira rotula (Bacillariophyceae). Strain H605S5-22 showed a wide algicidal activities over nine microlgae, strain H605S5-15 over H. akashiwo, G. catenatum, T. rotula, Chattonella sp. and strain H519S5-4 over H. akashiwo, Chattonella sp., Chaetoceros sp., G. catenatum. The activities of the three strains were detected by the secretion of algicidal substances. Therefore, it is suggested that the activities of algicidal bacteria have a significant influence over the population dynamics of phytoplankton and get involved with the sharp decrease in red tides in the coastal area.

  • PDF

Dietary Value of Three Benthic Diatom Species on Haliotis discus hannai Larvae (북방전복 Haliotis discus hannai 유생에 대한 3종 부착 규조류의 먹이효율)

  • Park, Se Jin;Hur, Sung Bum
    • The Korean Journal of Malacology
    • /
    • v.29 no.2
    • /
    • pp.91-96
    • /
    • 2013
  • Although the method of seedling production of Haliotis discus hannai is well known, the optimum benthic diatom species as a live food at early larval stage are not fully developed. In this study three Pennales diatom species, Caloneis schroederi, Rhaphoneis sp., and Cocconeis californica were examined on settlement, metamorphosis, survival, and growth of Haliotis discus hannai larvae. The larvae fed Raphoneis sp. or C. californica showed high settlement rate with 80-82% within 48 hrs, which was significantly higher than those fed C. schroederi or mixed diets with three diatom species. The larvae fed the former microalgal species also showed higher metamorphosis rate with 32-34% than the latter species with 10-12% within 4 days. With regard to survival and growth of the larvae, single diet with Rhaphoneis sp. or C. californica had better dietary value than the mixed diets for the early larvae of H. discus hannai.

Selection of Isochrysis and Pavlova Species for Mass Culture in High Temperature Season (고온기 배양에 적합한 Isochrysis와 Pavlova 종의 선정)

  • Yang, Sung-Jin;Hur, Sung-Bum
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.4
    • /
    • pp.343-350
    • /
    • 2012
  • Even though the microalgal species of Isochrysis and Pavlova are widely used as live food in bivalve hatcheries, they are difficult to culture in mass during the summer season. Therefore, the present study was conducted to determine the optimum species or strains of Isochrysis and Pavlova to produce good growth and high contents of fatty acids at temperatures over $30^{\circ}C$. Four species of Isochrysis (I. galbana KMMCC12, I. galbana KMMCC214, I. aff. galbana, and Isochrysis sp.) and four of Pavlova (P. lutheri, P. gyrans, P. viridis, and Pavlova sp.) were cultured at $25^{\circ}C$, $29^{\circ}C$, and $33^{\circ}C$, and then analyzed for specific growth rate and fatty acid composition. Microalgae were cultured in f/2 medium at 23 psu and continuous light of $80{\mu}mol$ photons $m^{-2}s^{-1}$. For the I. galbana, growth rates were highest at $29^{\circ}C$ and decreased at $33^{\circ}C$ to the level observed at $25^{\circ}C$. I. galbana (KMMCC12) and Isochrysis sp. cultured at $29^{\circ}C$ and $33^{\circ}C$, respectively, exhibited the highest growth rates of all Isochrysis species. In terms of fatty acids, I. galbana (KMMCC12) contained higher contents of PUFA and n-3 HUFA at $33^{\circ}C$ than did Isochrysis sp. For species of Pavlova, growth rates of P. gyrans and P. viridis at $29^{\circ}C$ and $33^{\circ}C$, respectively, were higher than those of the other Pavlova species. In particular, P. viridis grew as well at $33^{\circ}C$ as it did at $29^{\circ}C$. However, P. lutheri and Pavlova sp. did not grow at $33^{\circ}C$. In terms of fatty acids, P. viridis cultured at $33^{\circ}C$ also exhibited higher contents of PUFA and n-3 HUFA, as compared to P. gyrans. Based on these results, we suggest that I. galbana (KMMCC12) and P. viridis are suitable species for mass culture during the high temperature season.

Microalgal Growth and Nutrient Removal in a Lake, a Stream and the Outflow of a Wastewater Treatment System (호수수, 하천수와 하수처리수에서 미세조류 증식 특성 및 영양 염류 제거 효과)

  • Chang, In-Ho;Joung, Yo-Chan;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.129-135
    • /
    • 2011
  • The possibility of nutrient removal during Scenedesmus sp. growth in Lake Paldang, Geongan cheon stream, and the outflow from a wastewater treatment system was examined. Scenedesmus sp. grew well in Lake Paldang water when total nitrogen (TN) and total phosphorus (TP) values were 1.9 and 0.02 mg $L^{-1}$, respectively, and 50% of the nutrients were removed. In Geongan cheon stream, the TN and TP was 3.0 mg $L^{-1}$ and 0.09 mg $L^{-1}$, respectively, chlorophyll-${\alpha}$ reached a maximum of 239~259 $m^{-3}$, and 50% of the nutrients were removed. In the wastewater treatment outflow, where Scenedesmus sp. already existed, the organism grew well without inoculation. Scenedesmus sp. can grow with proper inoculation and physical turbulence in natural waters, such as lake and stream water, and nutrients can be eliminated as phytoplankton growth occurs.

Recent Research Trends of Cryopreservation Technology Based on Microalgae Chlorophyta (미세조류 동결보존 기술 개발의 최근 연구 동향)

  • Yim, Jun-Ho;Seo, Yong Bae;Kim, Seon Min;Jeon, Young Jae
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.960-968
    • /
    • 2021
  • Since microalgae research started on late 18 century, they have been recognized as one of the most important bioresources used in bioindustry. Owing to the large efforts paid to industrial application of this microorganisms, their importance on food/feed and bioactive compounds has been further extending into the environmental research areas including alternative energy resources, mitigation of the carbon emission, and waste-water treatment. However, despite the importance on their industrial application, the fundamental research field related to the long-term preservation of microalgae culture has not received much attention. However, a less labor intensive and cost-efficient preservation technology enabling biologically active and stable microalgae-culture provides a key success factor in the biotechnological application. Therefore, this study investigated various cutting-edge microalgae cryopreservation technologies currently developed so far, mainly targeting Chlorophyta, which occupies the largest taxon in the classification system of microalgae. In addition, for the development of successful cryopreservation technique, the key factors such as temperature control effect and preservative effect during cryopreservation of microalgae culture were investigated. In addition, the problems with current preservation technology that is being used in Korean domestic biological resource banks and the international microalgal resource banks are described. According to our investigation, currently no standard method for long-term preservation of microalgae is available due to their various morphological and physiological characteristics. To overcome such issues, much more efforts on fundamental research area on the identification of specific biomarker used for microalgae taxonomical classification and further systemic approaches based on strain-specific cryopreservation methods needed.

Characterization of Cellular Growth, CO2 Assimilation and Neutral Lipid Production for 4 Different Algal Species (미세조류 4종의 성장, CO2 동화 및 지질 생성 특성)

  • Shin, Chae Yoon;Noh, Young Jin;Jeong, So-Yeon;Kim, Tae Gwan
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.547-555
    • /
    • 2020
  • Microalgae are a promising resource in energy and food production as they are cost-effective for biomass production and accumulate valuable biological resources. In this study, CO2 assimilation, biomass, and lipid production of 4 microalgal species (Chlorella vulgaris, Mychonastes homosphaera, Coelastrella sp., and Coelastrella vacuolata) were characterized at different CO2 concentrations ranging from 1% to 9%. Microscopic observation indicated that C. vulgaris was the smallest, followed by M. homosphaera, C. vacuolata, and Coelastrella sp. in order of size. C. vulgaris grew and consumed CO2 more rapidly than any other species. C. vulgaris exhibited a linear increase in CO2 assimilation (up to 9.62 mmol·day-1·l-1) as initial biomass increased, while the others did not (up to about 3 mmol·day-1·l-1). C. vulgaris, Coelastrella sp., and C. vacuolata showed a linear increase in the specific CO2 assimilation rate with CO2 concentration, whereas M. homosphaera did not. Moreover, C. vulgaris had a greater CO2 assimilation rate compared to those of the other species (14.6 vs. ≤ 11.9 mmol·day-1·l-1). Nile-red lipid analysis showed that lipid production per volume increased linearly with CO2 concentration in all species. However, C. vulgaris increased lipid production to 18 mg·l-1, compared to the 12 mg·l-1 produced by the other species. Thus, C. vulgaris exhibited higher biomass and lipid production rates with greater CO2 assimilation capacity than any other species.

Temporal and Spatial Variation of Microalgal Biomass and Community Structure in Seawater and Surface Sediment of the Gomso Bay as Determined by Chemotaxonomic Analysis (색소분석을 통한 곰소만 내 해수와 퇴적물 중 미세조류 생체량과 군집구조의 시공간적 변화)

  • Lee, Yong-Woo;Park, Mi-Ok;Yoon, Ji-Hyun;Hur, Sung-Bum
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2012
  • To compare monthly variations of phytoplankton biomass and community composition between in seawater and sediment of the Gomso Bay (tidal flat: approximately 75%), the photosynthetic pigments were analyzed by HPLC every month in 1999 and every two months in 2000. Ambient physical and chemical parameters (temperature, salinity, nutrients, dissolved oxygen, and chemical oxygen demand) were also examined to find the environmental factors controlling structure of phytoplankton community. The temporal and spatial variations of chlorophyll a concentration in seawater were correlated well with the magnitude of freshwater discharge from land. The biomass of microphytobenthos at the surface sediments was lower than that in other regions of the world and 2-3 times lower than phytoplankton biomass integrated in the seawater column. Based on the results of HPLC pigment analysis, fucoxanthin, a marker pigment of diatoms, was the most prominent pigment and highly correlated with chlorophyll a in seawater and sediment of the Gomso Bay. These results suggest that diatoms are the predominant phytoplankton in seawater and sediment of the Gomso Bay. However, the monthly variation of chlorophyll a concentration in seawater at the subtidal zone was not a good correlation with that in sediment of the Gomso Bay. Although pelagic plankton was identified in seawater by microscopic examination, benthic algal species were not found in the seawater. These results suggest that contribution from the suspended microphytobenthos in the tidal flat to the subtidal zone of the Gomso Bay may be low as a food source to the primary consumer in the upper water column of the subtidal zone. Further study needs to elucidate the vertical and horizontal transport magnitude of the suspended microphytobenthos in the tidal flat to the subtidal zone.

Seasonal Variations of Microphytobenthos in Sediments of the Estuarine Muddy Sandflat of Gwangyang Bay: HPLC Pigment Analysis (광합성색소 분석을 통한 광양만 갯벌 퇴적물 중 저서미세조류의 계절변화)

  • Lee, Yong-Woo;Choi, Eun-Jung;Kim, Young-Sang;Kang, Chang-Keun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • Seasonal variations of microalgal biomass and community composition in both the sediment and the seawater were investigated by HPLC pigment analysis in an estuarine muddy sandflat of Gwangyang Bay from January to November 2002. Based on the photosynthetic pigments, fucoxanthin, diadinoxanthin, and diatoxanthin were the most dominant pigments all the year round, indicating that diatoms were the predominant algal groups of both the sediment and the seawater in Gwangyang Bay. The other algal pigments except the diatom-marker pigments showed relatively low concentrations. Microphytobenthic chlorophyll ${\alpha}$ concentrations in the upper layer (0.5 cm) of sediments ranged from 3.44 (March at the middle site of the tidal flat) to 169 (July at the upper site) mg $m^{-2}$, with the annual mean concentrations of $68.4{\pm}45.5,\;21.3{\pm}14.3,\;22.9{\pm}15.6mg\;m^{-2}$ at the upper, middle, and lower tidal sites, respectively. Depth-integrated chlorophyll ${\alpha}$ concentrations in the overlying water column ranged from 1.66 (November) to 11.7 (July) mg $m^{-2}$, with an annual mean of $6.96{\pm}3.04mg\;m^{-2}$. Microphytobenthic biomasses were about 3${\sim}$10 times higher than depth-integrated phytoplankton biomass in the overlying water column. The physical characteristics of this shallow estuarine tidal flat, similarity in taxonomic composition of the phytoplankton and microphytobenthos, and similar seasonal patterns in their biomasses suggest that resuspended microphytobenthos are an important component of phytoplankton biomass in Gwangyang Bay. Therefore, considering the importance of microphytobenthos as possible food source for the estuarine benthic and pelagic consumers, a consistent monitoring work on the behavior of microphytobenthos is needed in the tidal flat ecosystems.