• Title/Summary/Keyword: Micro-tensile

Search Result 525, Processing Time 0.029 seconds

Thermo-elastic analysis of rotating functionally graded micro-discs incorporating surface and nonlocal effects

  • Ebrahimi, Farzad;Heidar, Ebrahim
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.295-318
    • /
    • 2018
  • This research studies thermo-elastic behavior of rotating micro discs that are employed in various micro devices such as micro gas turbines. It is assumed that material is functionally graded with a variable profile thickness, density, shear modulus and thermal expansion in terms of radius of micro disc and as a power law function. Boundary condition is considered fixed-free with uniform thermal loading and elastic field is symmetric. Using incompressible material's constitutive equation, we extract governing differential equation of four orders; to solution this equation, we utilize general differential quadrature (GDQ) method and the results are schematically pictured. The obtained result in a particular case is compared with another work and coincidence of results is shown. We will find out that surface effect tends to split micro disc's area to compressive and tensile while nonlocal parameter tries to converge different behaviors with each other; this convergence feature make FGIMs capable to resist in high temperature and so in terms of thermo-elastic behavior we can suggest, using FGIMs in micro devices such as micro turbines (under glass transition temperature).

Electrical and Mechanical Properties of Epoxy/Micro-sized Alumina Composite and the Effect of Nano-sized Alumina on Those Properties

  • Park, Jae-Jun;Shin, Seong-Sik;Yoon, Chan-Young;Lee, Jae-Young;Park, Joo-Eon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.260-263
    • /
    • 2015
  • Epoxy/micro-sized alumina composite was prepared and the effects of alumina content on the electrical and mechanical properties were investigated in order to develop an insulation material for gas insulated switchgear (GIS). Nano-sized alumina (average particle size: 30 μm) was also incorporated into the epoxy/micro-sized alumina composite. An electrical insulation breakdown strength test was carried out in sphere-sphere electrodes and the data were estimated by Weibull statistical analysis. Tensile strength was measured at a crosshead speed of 10 mm/min using a universal testing machine. Alumina content was varied from 0 wt% to 70 wt%.). As micro-sized alumina content increased, insulation breakdown strength increased until 40 wt% alumina content and decreased after that content. The tensile strength of a neat epoxy system was 82.2 MPa and that value for 60 wt% alumina content was 91.8 MPa, which was 111.7% higher than inthe neat epoxy system. The insulation breakdown strength of micro-sized alumina (60 wt%)/nano-sized alumina (1 phr) glycerol diglycidyl ether (GDE) (1 phr) composite was 54.2 MPa, which was 116% higher than the strength of the system without nano-sized alumina.

Correlation Between Flexural Toughness and Cracking Characteristics of Micro-fiber Reinforced Mortar According to Fiber Contents (마이크로 섬유보강 모르타르의 휨 인성과 균열 특성의 상관관계)

  • Shin, Kyung-Joon;Jang, Kyu-Hyou;Kim, Eui Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.249-257
    • /
    • 2008
  • Various methods have been used to reinforce the cementitious material such as mortar and concrete that have weak tensile strength. Major reinforcing method is to mix matrix with fibers which have strong tensile strength. Recently, micro-fiber reinforced mortar has been studied which removes coarse aggregate and uses micro-fiber with small diameter in order to homogenize the matrix properties and maximize the performance of fiber. Performance of micro-fiber reinforced mortar showing multiple cracking behavior is hardly represented only by the flexural toughness. Therefore, This paper reports the cracking behavior as well as mechanical behavior for various mixtures which have different fiber type and mixture proportions to find the proper parameter representing the cracking characteristic. Correlations between flexural toughness and various cracking characteristics such as cracking area, width and number are explored. As a result, it is found that flexural toughness, volume of fiber and number of cracks are suitable for representing the characteristics of micro-fiber reinforced mortar.

Deterioration of tensile behavior of concrete exposed to artificial acid rain environment

  • Fan, Y.F.;Hu, Z.Q.;Luan, H.Y.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.41-56
    • /
    • 2012
  • This study is focused on evaluation of the tensile properties of concrete exposed to acid rain environment. Acid rain environment was simulated by the mixture of sulfate and nitric acid in the laboratory. The dumbell-shaped concrete specimens were submerged in pure water and acid solution for accelerated conditioning. Weighing, tensile test, CT, SEM/EDS test and microanalysis were performed on the specimens. Tensile characteristics of the damaged concrete are obtained quantitatively. Evolution characteristics of the voids, micro cracks, chemical compounds, elemental distribution and contents in the concrete are examined. The deterioration mechanisms of concrete exposed to acid rain are well elucidated.

A Study on Surface Characteristics of High Tensile Brass with Molybdenum Flame Spray Treatment (고력황동의 몰리브덴 화염용사에 따른 표면 특성에 관한 연구)

  • Jung, Dong-Hyun;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.38-45
    • /
    • 2018
  • Molybdenum flame spray coatings are widely used in industrial fields to enhance the performance of mechanical component parts such as pistons, shafts and clutches. This study investigates the surface characteristics of high tensile brass with molybdenum flame spray treatment using the clutch material for small ship. The surface characteristics after molybdenum flame spray treatment in high tensile brass were quantitatively analyzed for surface composition, coating layer thickness, friction coefficient, abrasion width and phenomenon, micro-hardness, and surface roughness.

Mechanical Strength Evaluation of A53B Carbon Steel Subjected to High Temperature Hydrogen Attack

  • Kim, Maan-Won;Lee, Joon-Won;Yoon, Kee-Bong;Park, Jai-Hak
    • International Journal of Safety
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • In this study mechanical strength of A53B carbon steel was analyzed using several types of test specimens directly machined from oil recycling pipe experienced a failure due to hydrogen attack in chemical plants. High temperature hydrogen attack (HTHA) is the damage process of grain boundary facets due to a chemical reaction of carbides with hydrogen, thus forming cavities with high pressure methane gas. Driven by the methane gas pressure, the cavities grow on grain boundaries forming intergranular micro cracks. Microscopic optical examination, tensile test, Charpy impact test, hardness measurement, and small punch (SP) test were performed. Carbon content of the hydrogen attacked specimens was dramatically reduced compared with that of standard specification of A53B. Traces of decarburization and micro-cracks were observed by optical and scanning electron microscopy. Charpy impact energy in hydrogen attacked part of the pipe exhibited very low values due to the decarburization and micro fissure formation by HTHA, on the other hand, data tested from the sound part of the pipe showed high and scattered impact energy. Maximum reaction forces and ductility in SP test were decreased at hydrogen attacked part of the pipe compared with sound part of the pipe. Finite element analyses for SP test were performed to estimate tensile properties for untested part of the pipe in tensile test. And fracture toughness was calculated using an equivalent strain concept with SP test and finite element analysis results.

Nd-YAG LASER MICRO WELDING OF STAINLESS WIRE

  • Takatugu, Masaya;Seki, Masanori;Kunimas, Takeshi;Uenishi, Keisuke;Kobayashi, Kojiro F.;Ikeda, Takeshi;Tuboi, Akihiko
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.187-192
    • /
    • 2002
  • Applicability of laser micro welding process to the fabrication of medical devices was investigated. Austenitic stainless steel wire (SUS304) was spot melted and crosswise welded, which is one of the most possible welding process for the fabrication of medical devices, by using a Nd-YAG laser. Effects of welding parameters on the microstructure, tensile strength and corrosion resistance were discussed. In the spot melting, melted metal width decreased with decreasing the input energy and pulse duration. Controlling the laser wave to reduce laser noise which occurred in the early stage of laser irradiation made reasonable welding condition wider in the welding condition of small pulse duration such as 2ms. The microstructure of the melted metal was a cellular dendrite structure and the cell size of the weld metal was about 0.5~3.5 ${\mu}{\textrm}{m}$. Tensile strength increased with the decrease of the melted metal width and reached to a maximum about 660MPa, which is comparable with that for the tempered base metal. Even by immersion test at 318K for 3600ks in quasi biological environment (0.9% NaCl), microstructure of the melted metal and tensile strength hardly changed from those for as melted material. In the crosswise welding, joints morphologies were classified into 3 types by the melting state of lower wire. Fracture load increased with input energy and melted area of lower wire, and reached to a maximum about 80N. However, when input energy was further increased and lower wire was fully melted, fracture load decreased due to the burn out of weld metal.

  • PDF

The Influence of Water Storage on Mechanical Properties of Adhesive Resin (수중 보관이 접착용 레진의 물리적 성질에 미치는 영향)

  • Kim, Won-Chan;Lee, Kwang-won;Lee, Jeong;Yu, Mi-Kyoung;Kim, Jeong-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.193-202
    • /
    • 2006
  • Objective To evaluate the influence of water storage on the mechanical properties of dental adhesives over 1 and 3 months. Materials and Methods Adhesive resin sheets were prepared by pouring either All-bond 2(AB), Clearfil SE Bond(SE) into a mold measuring $15{\times}15{\times}0.9mm$. After solvent in primer evaporation, the adhesives were light-cured and removed from the mold and divided in two pieces, trimmed to hourglass shape that were used to determine the micro-tensile strength(MTS). Another hourglass shaped metal mold measuring $2.0{\times}1.5mm$ in cross-section area was made to determine the Young's modulus(E). Adhesive specimens for Young's modulus(E) were prepared in the same method. Specimens were stored at $37^{\circ}C$ in distilled water and tested after 1 and 3 months. The data were analyzed by one-way ANOVA and Tukey's test. Results Water storage significantly decreased the micro-tensile strength(MTS) of AB and SE specimens after 1 and 3 months(P<0.05). The Young's modulus(E) were also decreased after water storage for 1 and 3 months, but statistically not significant in each group of AB and SE group respectively. Conclusions Long-term exposure of adhesive resin to water can cause reduction of mechanical properties. It may compromise resin/dentin bonds and affect longevity of restorations.

Modeling on Ultrasonic Velocity in Concrete Considering Micro Pore Structure and Loading Conditions (공극구조 및 하중조건에 따른 콘크리트의 초음파 속도 모델링)

  • Kim, Yun Yong;Oh, Kwang-Chin;Park, Ki-Tae;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.3
    • /
    • pp.415-426
    • /
    • 2015
  • For a long time, evaluation of soundness and strength in concrete has been performed through ultrasonic velocity(UV), which is essential work in field assessment. Porosity in concrete is a major parameter indicating durability and strength, and UV passing concrete depends on porosity variation. In this paper, a modeling on UV through concrete is carried out considering porosity and the results are verified with those from test. Additionally UV in concrete under compression/tension loading condition is measured and UV modeling with loading condition is performed. Up to 50% of loading ratio, UV slightly increases and greatly drops at peak load in compression region, however it fluctuates in tensile region due to micro cracking in matrix. The proposed model shows a reasonable agreement with test results in control and compression region, and needs modification for tensile region considering micro cracks and local aggregate interlocking.

Study of cracks in compressed concrete specimens with a notch and two neighboring holes

  • Vahab, Sarfarazi;Kaveh, Asgari;Shirin, Jahanmiri;Mohammad Fatehi, Marji;Alireza Mohammadi, Khachakini
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.317-330
    • /
    • 2022
  • This paper investigated computationally and experimentally the interaction here between a notch as well as a micropore under uniaxial compression. Brazilian tensile strength, uniaxial tensile strength, as well as biaxial tensile strength are used to calibrate PFC2d at first. Then, uniaxial compression test was conducted which they included internal notch and micro pore. Experimental and numerical building of 9 models including notch and micro pore were conducted. Model dimensions of models are 10 cm × 10 cm × 5 cm. Joint length was 2 cm. Joints angles were 30°, 45° and 60°. The position of micro pore for all joint angles was 2cm upper than top of the joint, 2 cm upper than middle of joint and 2 cm upper than the joint lower tip, discreetly. The numerical model's dimensions were 5.4 cm × 10.8 cm. The fractures were 2 cm in length and had angularities of 30, 45, and 60 degrees. The pore had a diameter of 1 cm and was located at the top of the notch, 2 cm above the top, 2 cm above the middle, and 2 cm above the bottom tip of the joint. The uniaxial compression strength of the model material was 10 MPa. The local damping ratio was 0.7. At 0.016 mm per second, it loaded. The results show that failure pattern affects uniaxial compressive strength whereas notch orientation and pore condition impact failure pattern. From the notch tips, a two-wing fracture spreads almost parallel to the usual load until it unites with the sample edge. Additionally, two wing fractures start at the hole. Both of these cracks join the sample edge and one of them joins the notch. The number of wing cracks increased as the joint angle rose. There aren't many AE effects in the early phases of loading, but they quickly build up until the applied stress reaches its maximum. Each stress decrease was also followed by several AE effects. By raising the joint angularities from 30° to 60°, uniaxial strength was reduced. The failure strengths in both the numerical simulation and the actual test are quite similar.