• Title/Summary/Keyword: Micro-rolling

Search Result 103, Processing Time 0.032 seconds

Effect of Tio2 particles on the mechanical, bonding properties and microstructural evolution of AA1060/TiO2 composites fabricated by WARB

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in materials Research
    • /
    • v.9 no.2
    • /
    • pp.99-107
    • /
    • 2020
  • Reinforced aluminum alloy base composites have become increasingly popular for engineering applications, since they usually possess several desirable properties. Recently, Warm Accumulative Roll Bonding (WARB) process has been used as a new novel process to fabricate particle reinforced metal matrix composites. In the present study, TiO2 particles are used as reinforcement in aluminum metal matrix composites fabricated through warm accumulative roll bonding process. Firstly, the raw aluminum alloy 1060 strips with TiO2 as reinforcement particle were roll bonded to four accumulative rolling cycles by preheating for 5 min at 300℃before each cycle. The mechanical and bonding properties of composites have been studied versus different volume contents of TiO2 particles by tensile test, peeling test and vickers micro-hardness test. Moreover, the fracture surface and peeling surface of samples after the tensile test and peeling test have been studied versus different amount of TiO2 volume contents by scanning electron microscopy. The results indicated that the strength and the average vickers micro-hardness of composites improved by increasing the volume content of TiO2 particles and the amount of their elongation and bonding strength decreased significantly.

Catalytic Membrane Reactor for Dehydrogenation of Water Via gas-Shift: A Review of the Activities for the Fusion Reactor Fuel Cycle

  • Tosti, Silvano;Rizzello, Claudio;Castelli, Stefano;Violante, Vittorio
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen and its isotopes (deuterium and tritium) purification and recovery in the fusion reactor fuel cycle. Particularly a closed-loop process has been studied for recovering tritium from tritiated water by means of a CMR in which the water gas shift reaction takes place. The development of the techniques for coating micro-porous ceramic tubes with Pd and Pd/Ag thin layers is described : P composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20 $\mu$m) and rolling of thin metal sheets (Pd and Pd/Ag membranes of 50-70 $\mu$m). Experimental results of the electroless membranes have shown a not complete hydrogen selectivity because of the presence of some defects(micro-holes) in the metallic thin layer. Conversely the rolled thin Pd and Pd/ag membranes have separated hydrogen from the other gases with a complete selectivity giving rise to a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests have confirmed the good performances of the rolled membranes in terms of chemical stability over several weeks of operation. Therefore these rolled membranes and CMR are adequate for applications in the fusion reactor fuel cycle as well as in the industrial processes where high pure hydrogen is required (i.e. hydrocarbon reforming for fuel cell)

  • PDF

The Effect on the Strength According to Carbon Content of Kovar Steel (코바강의 탄소첨가량에 따른 강도에 미치는 영향)

  • Choi, Byung-Hui;Choi, Byung-Ky
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.28-33
    • /
    • 2010
  • Ni alloy steel is able to use during long time because of good acid and corrosion resistance. So, it's research has focused on developing the alternative alloy which is economically feasible. Recently, consumption of Kovar steel is gradually increased in field of the jet engine and the gas turbine because of its low thermal expansive characteristics. The specimens of Kovar steel(29%Ni-17%Co) contain 0.00%C, 0.03%C, 0.06%C, 0.10%C and 0.20%C, respectively. Ingots are manufactured by VIM(vacuum induction melting furnace) and then specimens are made by automatic hot rolling after heat treatment. Strength of Kovar steel according to carbon contents is estimated by hardness, tensile and impact test. Hardness of the 0.20%C specimen is more improved approximately 14.4% than one of base metal. Its strength increases 32.4% of a base metal, and its impact energy is also enhance 11.5%.

A Study on Forming of Micro Rib Barriers by Roll Forming Technique (롤 포밍에 의한 미세 격벽 성형에 대한 연구)

  • Park, Jong-Jin;Hwang, Han-Sub
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1136-1141
    • /
    • 2003
  • Among various methods to manufacture the PDP barrier ribs, the pressing and the roll forming methods are simple and economical because they form the ribs by utilizing the plastic flow of the green tape in a relatively short time without generating air-polluting dusts. In the present study, the roll forming method was investigated by experiments as well as numerical analyses and in result the groove roll and the preform were designed. The effect of draft angle, comer radius, and initial thickness of the green tape on the plastic flow was examined by a series of parametric studies. The preform was recommended to ease the plastic flow into the grooves and to avoid the occurrence of crack during rolling and sintering processes.

  • PDF

Analysis of Macroscopic Forming Process on the Basis of Microscopic Crystal Plasticity (미시적 결정소성학에 의거한 거시적 성형공정 해석)

  • 여은구;이용신
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.167-175
    • /
    • 1998
  • A mathematical formulation is presented to model anisotropy from the deformation textures developed in a forming process. In this work, a micro-mechanical-based polycrystalline analysis is implemented into a consistent finite element method for the anisotropic, viscoplastic deformation of polycrystalline metals. As suggested by Taylor, the deformation of each grain in an aggregate is assumed to be same as the macroscopic deformation of an aggregate or a macro-continuum point. Algorithms are developed to represent the plastic anisotropy, such as the anisotropic yield surface and R-value, from the predicted deformation texture. As applications, the evolution of texture in rolling, upsetting and drawing/extrusion processes are simulated and the corresponding changes of mechanical properties such as yield surface and R-value are predicted.

  • PDF

Development of VVVF Inverter Control System for Propulsion System (차량용 VVVF 인버터 제어시스템 개발)

  • Kim, B.S.;Lee, K.C.;Lee, H.S.;Kim, S.W.;Park, Y.C.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.249-251
    • /
    • 1994
  • This paper introduces an implementation of high performance voltage source inverter system based on 16bit micro-processor and DSP for the application to modem rolling stock traction system. In contrast with other industry oriented inverter system, this system requires precise control action complying with various load condition and high overload capability. An asynchronous PWM generation and 3' pulse mode technology are adopted in order to improve compliant starting torque characteristics at starting phase and soft backward-forward starting motion.

  • PDF

A Study on Friction stir welding Properties of Extruded Aluminum Panels for Rolling Stock (철도차량용 알루미늄 압출 패널의 마찰교반용접 특성에 관한 연구)

  • Park, Young-Bin;Goo, Byeong-Choon;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2053-2058
    • /
    • 2008
  • Extruded aluminium panels have been widely used for railway vehicle structures because of their light specific weight and other merit. In the past, GMAW (Gas Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) were mainly used to join aluminium panels. But recently friction stir welding (FSW) is widely used. due to its lots of advantage. In this study aluminium A6005-T6 which are used for car body structures was chosen. The influence of main parameters such as : pin rotating speed, welding speed, shoulder diameter, pin length and tilting angle on mechanical properties was examined. Optical microscope observation, micro hardness test and tensile test were carried out. Tensile strength of the stir welded plates is 74% of that of the base material.

  • PDF

The study of non-destructive analysis of objects excavated at the tomb of Mich’un-ri in Ch’ung-won (유물의 비파괴 조사 연구-청원 미천리 고분 출토 유물을 중심으로)

  • Moon, Whan-Suk;Jo, Nam-Cheol;Kim, Seong-Bae
    • 보존과학연구
    • /
    • s.20
    • /
    • pp.81-90
    • /
    • 1999
  • We performed the non-destructive analysis of objects excavated at the Tomb of Mich’un-ri in Ch’ung-won. We analysed components using of Energy Dispersive X-Ray Micro-Fluorescence Analyzer. Glass bead inlaid with silver was classified as K2O-CaO-SiO2 type of glass. Purity of silver inlaid in the surface was verified above 97%.All small ear-ring were made by rolling up gold broad to a bronze wick. The composition ratio of Au : Ag has significantly higher 87 : 11 than bigear-ring. As a result of composition analysis of a welded part with big ear-ring, it contained the more Cu, Hg contents and the less Au, Ag contents than the surface of big ear-ring.

  • PDF

Pd-based metallic membranes for hydrogen separation and production

  • Tosti, Silvano;Basile, Angelo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.25-28
    • /
    • 2003
  • Low cost composite metallic membranes for the hydrogen separation and production have been prepared by using thin Pd-Ag foils reinforced by metallic (stainless steel and nickel) structures. Especially, “supported membranes” have been obtained by a diffusion welding procedure in which Pd-Ag thin foils have been joined with perforated metals (nickel) and expanded metals (stainless steel): in these membranes the thin palladium foil assures both the high hydrogen permeability and the perm-selectivity while the metallic support provides the mechanical strength. A second studied method of producing "laminated membranes" consists of coating non-noble metal sheets with very thin palladium layers by diffusion welding and cold-rolling. Palladium thin coatings over these metals reduce the activation energy of the hydrogen adsorption process and make them permeable to the hydrogen. In this case, the dense non-noble metal has been used as a support structure of the thin Pd-Ag layers coated over its surfaces: a proper thickness of the metal assures the mechanical strength, the absence of defects (cracks, micro-holes) and the complete hydrogen selectivity of the membrane. membrane.

  • PDF

Application of Ultrasonic Vibration Energy on Eco-superfinishing and Surface Hardening Treatment of Cold Work Roller (초음파 진동에너지를 이용한 냉간 압연롤러 표면의 환경 친화적 초정밀 사상 및 표면 경화 처리 및 시험)

  • Y.S. Pyoun;Park, J.H.;C.H. Han;Park, Y.;I.S. Cho;N. Azuma;Lee, J.H.;Kim, C.S.;Park, C.H.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.39-39
    • /
    • 2002
  • In order to improve wear and fatigue resistance of the structural materials, especially cold work roller for 304 stainless steel, an eco-super-finishing and surface hardening treatment using ultrasonic vibration energy was developed and applied to the SKD-ll roller. The eco-super-finishing machine was designed and fabricated by DesignMecha Co, by its own technology. It was observed that the surface roughness, hardness and residual stress were changed from $Ra{\;}={\;}O.25\mu\textrm{m}$, Hv=710 and ${\sigma}$={\;}+400{\;}MPa{\;}to{\;}Ra{\;}={\;}0.165\mu\textrm{m}$, Hv = 1200 and ${\sigma}=-610$ MPa after 20 KHz micro-cold forging, which means almost equal to the 300 % improvement of life-time.

  • PDF