• Title/Summary/Keyword: Micro-patterned Mold

Search Result 34, Processing Time 0.036 seconds

A Study on the Effect of Optical Characteristics in 2 inch LCD-BLU by Aspect Ratio of Optical Pattern : I. Optical Analysis and Design (휴대폰용 2인치 LCD-BLU의 광특성에 미치는 광학패턴 세장비의 영향 연구 : I. 광학 해석 및 설계)

  • Hwang, C.J.;Ko, Y.B.;Kim, J.S.;Yoon, K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.239-242
    • /
    • 2006
  • LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of kernel parts of LCD unit and it consists of several optical sheets(such as prism, diffuser and protector sheets), LGP (Light Guiding Plate), light source (CCFL or LED) and mold frame. The LGP of LCD-BLU is usually manufactured by forming numerous dots with $50{\sim}200$ um in diameter on it by etching process. But the surface of the etched dots of LGP is very rough due to the characteristics of the etching process during the mold fabrication, so that its light loss is high along with the dispersion of light into the surface. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current etched dot patterned LGP, optical pattern design with 50um micro-lens was applied in the present study. The micro-lens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP. The attention was paid to the effects of different aspect ratio (i.e. $0.2{\sim}0.5$) of optical pattern conditions to the brightness distribution of BLU with micro-lens patterned LGP. Finally, high aspect ratio micro-lens patterned LGP showed superior results to the one made by low aspect ratio in average luminance.

  • PDF

Development of Micro-Optical Patterned LCD-LGP using UV Inclined-Exposure Process (UV 경사노광에 의한 미세광학패턴 LCD-도광판)

  • Hwang C. J.;Kim J. S.;Ko Y. B.;Heo Y. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.51-54
    • /
    • 2005
  • Light Guide Plate (LGP) of LCD-BLU(Back Light Unit) is manufactured by forming optical pattern with $5\~100um$ in diameter on the LGP by means of sand blasting or etching method. However, in order to improve the luminance of LCD-LGP, the design of optical pattern has introduced UV inclined-exposure process in this study. This micro-optical pattern, which has asymmetric elliptical column shaped pattern, can change low viewing-angle to high viewing-angle, as well as it contribute to diffusion of light. As a result, this type of micro-optical pattern can introduce the highly luminance. The PR structure obtained in the stage of lithography has asymmetric elliptical column shape and it is processed into a micro-optical pattern. Optical design with this kind of micro-optical pattern, mold fabrication by electroplating and LGP molding with injection molding are under way.

  • PDF

A study on the fabrication method of middle size LGP using continuous micro-lenses made by LIGA reflow

  • Kim, Jong-Sun;Ko, Young-Bae;Hwang, Chul-Jin;Kim, Jong-Deok;Yoon, Kyung-Hwan
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.171-176
    • /
    • 2007
  • LCD-BLU (Liquid Crystal Display-Back Light Unit) of medium size is usually manufactured by forming numerous dots with $50{\sim}300\;{\mu}m$ in diameter by etching process and V-grove shape with $50\;{\mu}m$ in height by mechanical cutting process. However, the surface of the etched dots is very rough due to the characteristics of the etching process and V-cutting needs rather high cost. Instead of existing optical pattern made by etching and mechanical cutting, 3-dimensional continuous micro-lens of $200\;{\mu}m$ in diameter was applied in the present study. The continuous micro-lens pattern fabricated by modified LIGA with thermal reflow process was tested to this new optical design of LGP. The manufacturing process using LIGA-reflow is made up of three stages as follows: (i) the stage of lithography, (ii) the stage of thermal reflow process and (iii) the stage of electroplating. The continuous micro-lens patterned LGP was fabricated with injection molding and its test results showed the possibility of commercial use in the future.

4 Inch Wafer-Scale Replicability Enhancement in Hot Embossing by using PDMS-Cushioned Si Mold (PDMS 쿠션을 갖는 Si 몰드에 의한 핫엠보싱 공정에서의 4 인치 웨이퍼 스케일 전사성 향상)

  • Kim Heung-Kyu;Ko Young-Bae;Kang Jeong-Jin;Heo Young-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.178-184
    • /
    • 2006
  • Hot embossing is to fabricate desired pattern on the polymer substrate by pressing the patterned mold against the substrate which is heated above the glass transition temperature, and it is a high throughput fabrication method for bio chip, optical microstructure, etc. due to the simultaneous large area patterning. However, the bad pattern fidelity in large area patterning is one of the obstacles to applying the hot embossing technology for mass production. In the present study, PDMS pad was used as a cushion on the backside of the micro-patterned 4 inch Si mold to improve the pattern fidelity over the 4 inch PMMA sheet by increasing the conformal contact between the Si mold and the PMMA sheet. The pattern replicability improvement over 4 inch wafer scale was evaluated by comparing the replicated pattern height and depth for PDMS-cushioned Si mold against the rigid Si mold without PDMS cushion.

A Study on the Fabrication Method of Mold for 2 inch LCD-BLU by 50μm Microlens : Effect of Different Aspect Ratio (50μm급 마이크로렌즈 적용 2인치 휴대폰 LCD-BLU 금형 개발 : 광학패턴의 세장비 영향)

  • Kim, J.S.;Ko, Y.B.;Min, I.K.;Yu, J.W.;Heo, Y.M.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.48-53
    • /
    • 2007
  • LCD-BLU(Liquid Crystal Display - Back Light Unit) consists of several optical sheets: LGP(Light Guiding Plate), light source and mold frame. The LGP of LCD-BLU is usually manufactured by etching process and forming numerous dots with $50{\mu}m$ in diameter on the surface. But the surface roughness of LGP with etched dots is very high, so there is much loss of light. In order to overcome the limit of current etched dot patterned LGP, optical pattern design with microlens of $50{\mu}m$ diameter was applied in the present study. The microlens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP and optical simulation was carried out to know tendency of microlens patterned LGP simultaneously. The attention was paid to the effects of different aspect ratio(i.e. $0.2\sim0.5$) of optical pattern conditions to the brightness distribution of BLU with microlens patterned LGP. Finally, high aspect ratio microlens patterned LGP showed superior results to the one made by low aspect ratio in average luminance.

A study on the process optimization of injection molding for replicability enhancement of micro channel (미세채널 전사성 향상을 위한 사출성형 공정최적화 기초연구)

  • Go, Young-Bae;Kim, Jong-Sun;Yu, Jae-Won;Min, In-Gi;Kim, Jong-Duck;Yoon, Kyung-Hwan;Hwang, Cheul-Jin
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • Micro channel is to fabricate desired pattern on the polymer substrate by pressing the patterned mold against the substrate which is heated above the glass transition temperature, and it is a high throughput fabrication method for bio chip, optical microstructure, etc. due to the simultaneous large area patterning. However, the bad pattern fidelity in large area patterning is one of the obstacles to applying the hot embossing technology for mass production. In the present study, stamper of cross channel with width $100{\mu}m$ and height $50{\mu}m$ was manufactured using UV-LiGA process. Micro channel was manufactured using stamper manufactured in this study. Also replicability appliance was evaluated for micro channel and factors affected replicability were investigated using Taguchi method.

  • PDF

Micro Pattern Forming on Polymeric Circular Tubes by Hydrostatic Pressing (폴리머 원형 튜브 대상 미세 패턴 정수압 성형)

  • Rhim, S.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.507-512
    • /
    • 2014
  • The objective of the current investigation is to establish techniques in micro pattern forming operations of polymeric circular tubes by using hydrostatic pressing. This method was developed and successfully applied to the micro pattern forming on polymeric plates. The key idea of the new technique is to pressurize multiple vacuum-packed substrate-mold stacks above the glass transition temperature of the polymeric substrates. The new process is thought to be a promising micro-pattern fabrication technique for two reasons; first, (hydro-) isostatic pressing ensures a uniform micro-pattern replicating condition regardless of the substrate area and thickness. Second, multiple curved substrates can be patterned at the same time. With the prototype forming machine for the new process, micro prismatic array patterns, 25um in height and 90 degrees in apex angle, were successfully made on the PMMA circular tubes with diameters of 5~40mm. These results show that this process can be also used in the micro pattern forming process on curved plates such as circular tube.

A study on fabrication of a micro patterned LGP (미세 패턴 응용 도광판 제작에 관한 연구)

  • Yoo Y.E.;Kim T.H.;Kim S.G.;Seo Y.H.;Je T.J.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.533-534
    • /
    • 2006
  • Micro pyramid pattern and its array are designed to enhance the brightness and its uniformity of LGP which is one of key parts in LCD. The designed micro pyramid patterns are fabricated on a Si-wafer first through MEMS process and then a Ni-stamper is electro-plated from the Si pattern master. Adopting the fabricated Ni-stamper, LGPs are injection molded at different mold temperatures and the fidelity of the pattern replication is estimated for each molding conditions and pattern locations. The replicated patterns are found to have some defect such as local short shot or micro weld line which are believed to have negative effect on the performance of the LGP.

  • PDF

Development of Nanowire Patterning Process Using Microcontact Printing (마이크로컨택 프린팅을 이용한 나노와이어 패터닝 기술 개발)

  • Jo, Sungjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.571-575
    • /
    • 2016
  • Recently, there has been much focus on the controlled alignment and patterning process of nanowires for nanoelectronic devices. A simple and effective method for patterning of highly aligned nanowires using a microcontact printing technique is demonstrated. In this method, nanowires are first directionally aligned by contact printing, following which line and space micropatterns of nanowire arrays are accomplished by microcontact printing with a micro patterned NOA mold.

Silicone Injection Mold & Molding Technology for Super-hydrophobic Curved Surface (초발수 곡면표면 실리콘 사출금형성형기술)

  • Lee, Sung-Hee;Kang, Jeong-Jin;Lee, Jong-Won;Hong, Seok-Kwan;Ko, Jong-Soo;Lee, Jae-Hoon;Noh, Ji-Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • In this study, silicone injection molding technology with curved thermoplastic insert was developed to produce super-hydrophobic surface. Thermoplastic insert part and injection mold design of base plastic cover were performed to produce cost effective hydrophobic surface part. An optimization process of part thickness for thermoplastic insert part was performed with transient thermal analysis under silicone over-molding process condition. Structural thermal analysis of silicone injection mold was also performed to obtain uniform temperature condition on the surface of micro-patterned mold core. Super-hydrophobic surface for the silicone injection molded part with thermoplastic insert could be verified from the measurement of contact angle. It was shown that the averaged contact angle was over $140^{\circ}$.