• Title/Summary/Keyword: Micro-pattern Replication

Search Result 45, Processing Time 0.021 seconds

Numerical Investigation of Micro Thermal Imprint Process of Glassy Polymer near the Glass Transition Temperature (열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링과 해석)

  • Lan, Shuhuai;Lee, Soo-Hun;Lee, Hye-Jin;Song, Jung-Han;Sung, Yeon-Wook;Kim, Moo-Jong;Lee, Moon-G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.45-52
    • /
    • 2009
  • The research on miniature devices based on non-silicon materials, in particular polymeric materials has been attracting more and more attention in the research field of the micro/nano fabrication in recent years. Lost of applications and many literatures have been reported. However, the study on the micro thermal imprint process of glassy polymer is still not systematic and inadequate. The aim of this research I to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature (Tg). An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model form the test data. As a result, the feasibility of the established viscoelastic model for PC near Tg was confirmed and this material model can be used in FE analysis for the prediction and improvement of the micro thermal imprint process for pattern replication.

  • PDF

Replication of Hybrid Micropatterns Using Selective Ultrasonic Imprinting (선택적 초음파 임프린팅을 사용한 복합 미세패턴의 복제기술)

  • Lee, Hyun Joong;Jung, Woosin;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.71-77
    • /
    • 2015
  • Ultrasonic imprinting is a micropattern replication technology for a thermoplastic polymer surface that uses ultrasonic vibration energy; it has the advantages of a short cycle time and low energy consumption. Recently, ultrasonic imprinting has been further developed to extend its functionality: (i) selective ultrasonic imprinting using mask films and (ii) repetitive ultrasonic imprinting for composite pattern development. In this study, selective ultrasonic imprinting was combined with repetitive imprinting in order to replicate versatile micropatterns. For this purpose, a repetitive imprinting technology was further extended to utilize mask films, which enabled versatile micropatterns to be replicated using a single mold with micro-prism patterns. The replicated hybrid micropatterns were optically evaluated through laser light images, which showed that versatile optical diffusion characteristics can be obtained from the hybrid micropatterns.

Fabrication of Silicon Nanotemplate for Polymer Nanolens Array

  • Cho, Si-Hyeong;Kim, Hyuk-Min;Lee, Jung-Hwan;Venkatesh, R. Prasanna;Rizwan, Muhammad;Park, Jin-Goo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.37.1-37.1
    • /
    • 2011
  • Miniaturization of lenses has been widely researched by various scientific and engineering techniques. As a result, micro scaled lens structure could be easily achieved from various fabrication techniques; nevertheless it is still challenging to make nano scaled lenses. This paper reports a novel fabrication method of silicon nanotemplate for nanolens array. The inverse structure of nanolens array was fabricated on silicon substrate by reactive ion etching (RIE) process. This technique has a flexibility to produce different tip shapes using different pattern masks. Once the silicon nano-tip array structure is well-defined using an optimized recipe, it is followed by polymer molding to duplicate nanolens array from the template. Finally, the nanostructures formed on silicon nanotemplate and polymer replica were investigated using FE-SEM and AFM measurements. The nano scaled lens can be manufactured from the same template, also using other replication techniques such as imprinting, injection molding and so on.

  • PDF

Hydrophobic Characteristics of a Silicone Resin Surface Produced by Replicating an Electric Discharge Machined Surface (방전가공면을 복제한 실리콘수지 표면의 발수특성연구)

  • Kim, Y.H.;Hong, S.K.;Lee, S.Y.;Lee, S.H.;Kim, K.H.;Kang, J.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • In this study, a micro/nano-random-pattern-structure surface was machined by electric discharge machining (EDM) followed by replicating the EDM surface with a silicone elastomer having low energy and greater hydrophobicity. The variation of hydrophobicity was of prime interest and was examined as a function of the surface roughness of the replicated silicone elastomer. The hydrophobicity was evaluated by the water contact angle (WCA) measured on the relevant surface. For the experiments, the original surfaces were machined by die sinking electric discharge machining (DS-EDM) and wire cutting electric discharge machining (WC-EDM). The ranges of surface roughness were Ra $0.8{\sim}19{\mu}m$ for the DS-EDM and Ra $0.5{\sim}4.7{\mu}m$ for the WC-EDM. In order to fabricate a hydrophobic surface, the EDM surfaces were directly replicated using a liquid-state silicone elastomer, which was thermally cured. The measured WCA on the replicated surfaces for DS-EDM was in the range of $115{\sim}130^{\circ}$ and for WC-EDM the WCA was in the range of $123{\sim}150^{\circ}$. Additionally, the dynamic hydrophobicity was evaluated by measuring an advancing and a receding WCA on the replicated silicone elastomer surfaces.

Bacteriocidal Effects of Ultraviolet Irradiation for Reducing Bovine Mastitis Derived from Environmental Contamination (우분뇨 유래 젖소 유방염 저감을 위한 자외선 조사 살균의 효과 규명)

  • Kim, Dong-Hyeok;Lim, Jung-Ju;Lee, Jin-Ju;Jang, Hong-Hee;Jang, Dong-Il;Lee, Seung-Joo;Lee, Hu-Jang;Min, Won-Gi;Kwon, Sun-Hong;Kim, Sang-Hun;Oh, Kwon-Young;Kim, Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.435-440
    • /
    • 2008
  • Bovine mastitis is an important disease causing serious economic loss in dairy production and food poison in public health. The major causative agents of bovine mastitis include Escherichia coli (E. coli), Streptococcus agalactiae (S. agalactiae), Staphylococcus aureus (S. aureus). These bacteria were found in milk and environmental condition such as feces, water, soil and so on. Recently, many cases of mastitis are derived from environmental contamination of micro-organisms, which important factors for the spread of this disease in farm. Ultraviolet irradiation (UV) has been used as disinfection for waste and water in clinical and industrial facilities. Moreover the UV irradiation has been used as useful bactericidal agents to remove bacterial biofilms in environmental condition. In this study, we determined the bacterial replication in different percentage of water content (PWC) in sterilized saw dust and feces complexes from farm, and results showed that slightly decreased growth pattern of E. coli and S. agalactiae but increased growth pattern of S. aureus in various PWC (200, 400 and 600%) until 144 h incubation. In the bacteriocidal effect of UV irradiation to bacteria in saw dust and feces complex, the results showed that bacteriocidal effect was depended on the UV irradiation time, irradiation distance and PWC. Especially the antibacterial activity of UV irratiation is stronger in low PWC (50%), long time irradiation (50 sec), and short distance (5 cm) than other condition of this study. Furthermore UV irradiation with stirring showed increased the bactericidal effect compared without stirring. These results suggested that bovine mastitis causing agents may survive long time in environmental condition especially saw dust and feces complexes in farm and can cause a various disease including mastitis. Moreover, these data can be used as basis for application and development of UV disinfection to control of bovine mastitis from environmental contaminated bacteria in dairy farm.