• Title/Summary/Keyword: Micro-nano structure

Search Result 281, Processing Time 0.026 seconds

Soft Robots Based on Magnetic Actuator (자성 액추에이터 기반의 소프트 로봇)

  • Nor, Gyu-Lyeong;Choi, Moon Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.401-415
    • /
    • 2021
  • Soft robots are promising devices for applications in drug delivery, sensing, and manufacturing. Traditional hard robotics are manufactured with rigid materials and their degrees of motion are constrained by the orientation of the joints. In contrast to rigid counterpart, soft robotics, employing soft and stretchable materials that easily deforms in shape, can realize complex motions (i.e., locomotion, swimming, and grappling) with a simple structure, and easily adapt to dynamic environment. Among them, the magnetic actuators exhibit unique characteristics such as rapid and accurate motion control, biocompatibility, and facile remote controllability, which make them promising candidates for the next-generation soft robots. Especially, the magnetic actuators instantly response to the stimuli, and show no-hysteresis during the recovery process, essential for continuous motion control. Here, we present the state-of-the-art fabrication process of magnetically controllable nano-/micro-composites, magnetically aligning process of the composites, and 1-dimensional/multi-dimensional multimodal motion control for the nextgeneration soft actuators.

Vibration analysis of defected and pristine triangular single-layer graphene nanosheets

  • Mirakhory, M.;Khatibi, M.M.;Sadeghzadeh, S.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1327-1337
    • /
    • 2018
  • This paper investigates the vibration behavior of pristine and defected triangular graphene sheets; which has recently attracted the attention of researchers and compare these two types in natural frequencies and sensitivity. Here, the molecular dynamics method has been employed to establish a virtual laboratory for this purpose. After measuring the different parameters obtained by the molecular dynamics approach, these data have been analyzed by using the frequency domain decomposition (FDD) method, and the dominant frequencies and mode shapes of the system have been extracted. By analyzing the vibration behaviors of pristine triangular graphene sheets in four cases (right angle of 45-90-45 configuration, right angle of 60-90-30 configuration, equilateral triangle and isosceles triangle), it has been demonstrated that the natural frequencies of these sheets are higher than the natural frequency of a square sheet, with the same number of atoms, by a minimum of 7.6% and maximum of 26.6%. Therefore, for increasing the resonance range of sensors based on 2D materials, nonrectangular structures, and especially the triangular structure, can be considered as viable candidates. Although the pristine and defective equilateral triangular sheets have the highest values of resonance, the sensitivity of defective (45,90,45) triangular sheet is more than other configurations and then, defective (45,90,45) sheet is the worst choice for sensor applications.

Effect of Promoting/Inhibiting Bubble Generation of Carbonate Solution on Superhydrophilic/Superhydrophobic Surfaces (극친수/극소수 표면에서 탄산용액의 기포 발생 촉진/억제 효과 분석 연구)

  • Lee, Jeong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.77-83
    • /
    • 2022
  • When carbon dioxide in a liquid becomes supersaturated, carbon dioxide gas bubbles are generated in the liquid, and they ascend to the surface as they develop further. At this time, the inner wall of the cup with carbon gas attached is known as the entrapped gas cavity (EGS); once an EGS is established, it does not disappear and will continuously create carbon bubbles. This bubbling phenomenon can be activated or suppressed by changing the properties of the solid surface in contact with the carbonated liquid. In this study, the foaming of carbonated liquid is promoted or suppressed by modifying the wettability of the surface. A micro/nano surface structure is formed on the surface of an aluminum cup to produce a superhydrophilic surface, and a superhydrophobic surface similar to a lotus leaf is synthesized via fluorination. Experiment results show that the amount of carbon dioxide bubble generated differs significantly in the first few seconds depending on the surface, and that the amount of gas generated after it enters the stabilization period is the same regardless of the wettability of the cup surface.

Force Analysis on the Nano/Micro Particle in a Flow using Immersed Boundary-Lattice Boltzmann Method (가상경계-격자 볼츠만 방법을 이용한 유동장내 나노/마이크로 입자에 작용하는 힘의 해석)

  • Jo, Hong Ju;Lee, Sei Young
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.35-44
    • /
    • 2022
  • Immersed boundary-Lattice Boltzmann Method (IB-LBM) is used for the analysis of flow over the circular cylinder in the concept of fluid-structure interaction analysis (FSI). Recently, IB-LBM has shown the enormous possibility for the application of various biomedical engineering fields, such as the movement of a human body or the behavior of the blood cells and/or particle-based drug delivery system in blood vessels. In order for the numerical analysis of the interaction between fluid and solid object, immersed boundary method and lattice Boltzmann method are coupled to analyze the flow over a cylinder for low Reynolds laminar flow (Re=10, 20, 40 and 100) with Zhu-He boundary condition at the boundary. With the developed IB-LBM, the flow around the cylinder in the uniform flow is analyzed for the laminar flow and the drag and lift coefficients and recirculation length are compared to the previous results.

Synthesis of Li-rich Cathode Material with Spherical Shape and High Crystallinity by Using Flame Spray Pyrolysis (화염분무열분해법을 이용한 구형의 고결정성 리튬 과잉 양극재 제조)

  • Sung Nam Lim
    • New & Renewable Energy
    • /
    • v.20 no.3
    • /
    • pp.20-27
    • /
    • 2024
  • A Li-rich cathode material, Li1.167Mn0.548Ni0.18Co0.105O2, with a spherical shape and high crystallinity, is prepared using flame spray pyrolysis. The post-heat treatment condition influences the properties of the prepared material, such as its structure, morphology, and chemical composition, and optimum performance is achieved at 900℃. Various excess Li contents (0-12 wt.%) are introduced in the precursor solution to compensate for volatilized Li during synthesis, bringing it close to the target composition. Compensation for volatilized Li enhances the electrochemical performance, i.e., the Li-compensated sample shows a good discharge capacity of 247 mAh g-1 at a current density of 20 mA g-1 in a potential window of 4.6-2.5 V. In addition, the prepared Li-rich cathode material supplemented with 9 wt.% of the Li source shows increased discharge capacity of 175 and 148 mAh g-1 at 200 and 400 mA g-1, respectively, compared with those of a bare sample (164 and 127 mAh g-1, respectively).

Microtube Light-Emitting Diode Arrays with Metal Cores

  • Tchoe, Youngbin;Lee, Chul-Ho;Park, Junbeom;Baek, Hyeonjun;Chung, Kunook;Jo, Janghyun;Kim, Miyoung;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.287.1-287.1
    • /
    • 2016
  • Three-dimensional (3-D) semiconductor nanoarchitectures, including nano- and micro- rods, pyramids, and disks, are emerging as one of the most promising elements for future optoelectronic devices. Since these 3-D semiconductor nanoarchitectures have many interesting unconventional properties, including the use of large light-emitting surface area and semipolar/nonpolar nano- or micro-facets, numerous studies reported on novel device applications of these 3-D nanoarchitectures. In particular, 3-D nanoarchitecture devices can have noticeably different current spreading characteristics compared with conventional thin film devices, due to their elaborate 3-D geometry. Utilizing this feature in a highly controlled manner, color-tunable light-emitting diodes (LEDs) were demonstrated by controlling the spatial distribution of current density over the multifaceted GaN LEDs. Meanwhile, for the fabrication of high brightness, single color emitting LEDs or laser diodes, uniform and high density of electrical current must be injected into the entire active layers of the nanoarchitecture devices. Here, we report on a new device structure to inject uniform and high density of electrical current through the 3-D semiconductor nanoarchitecture LEDs using metal core inside microtube LEDs. In this work, we report the fabrications and characteristics of metal-cored coaxial $GaN/In_xGa_{1-x}N$ microtube LEDs. For the fabrication of metal-cored microtube LEDs, $GaN/In_xGa_{1-x}N/ZnO$ coaxial microtube LED arrays grown on an n-GaN/c-Al2O3 substrate were lifted-off from the substrate by wet chemical etching of sacrificial ZnO microtubes and $SiO_2$ layer. The chemically lifted-off layer of LEDs were then stamped upside down on another supporting substrates. Subsequently, Ti/Au and indium tin oxide were deposited on the inner shells of microtubes, forming n-type electrodes of the metal-cored LEDs. The device characteristics were investigated measuring electroluminescence and current-voltage characteristic curves and analyzed by computational modeling of current spreading characteristics.

  • PDF

Fabrication of superhydrophobic $TiO_2$ thin films by wet process (습식 공정법에 의한 초발수 $TiO_2$ 박막 제조)

  • Kim, Jin-Ho;Jung, Hyun-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Choi, Duk-Gun;Cheong, Deock-Soo;Kim, Sae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.262-267
    • /
    • 2009
  • Superhydrophobic $TiO_2$ thin films were successfully fabricated on a glass substrate by wet process. Layer-by-layer (LBL) deposition and liquid phase deposition (LPD) methods were used to fabricate the thin films of micro-nano complex structure with a high roughness. To fabricate superhydrophobic $TiO_2$ thin films, the (PAH/PAA) thin films were assembled on a glass substrate by LBL method and then $TiO_2$ nanoparticles were deposited on the surface of (PAH/PAA) thin film by LPD method, Subsequently, hydrophobic treatment using fluoroalkyltrimethoxysilane (FAS) was carried out on the surface of prepared $TiO_2$ thin films. The $TiO_2$ thin film fabricated with 45 minutes immersion time on $(PAH/PAA)_{10}$ showed the RMS roughness of 65.6nm, water contact angel of $155^{\circ}$ and high transmittance of above 80% (>650nm in wavelength) after the hydrophobic treatment. The Surface morphologies, optical properties and contact angel of prepared thin films with different experimental conditions were measured by field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), UV-Vis spectrophotometer and contact angle meter.

A Study on the Application of GOCI to Analyzing Phytoplankton Community Distribution in the East Sea (동해에서 식물플랑크톤 군집 분포 분석을 위한 GOCI 활용 연구)

  • Choi, Jong-kuk;Noh, Jae Hoon;Brewin, Robert J.W.;Sun, Xuerong;Lee, Charity M.
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1339-1348
    • /
    • 2020
  • Phytoplankton controls marine ecosystems in terms of nutrients, photosynthetic rate, carbon cycle, etc. and the degree of its influence on the marine environment depends on their physical size. Many studies have been attempted to identify marine phytoplankton size classes using the remote sensing techniques. One of successful approach was the three-component model which estimates the chlorophyll concentrations of three phytoplankton size classes (micro-phytoplankton; >20 ㎛, nano-; 2-20 ㎛ and pico-; <2 ㎛) as a function of total chlorophyll. Here, we examined the applicability of Geostationary Ocean Colour Imager (GOCI) to the mapping of the phytoplankton size class distribution in the East Sea. A fit of the three-component model to a biomarker pigment dataset collected in the study area for some years including a large harmful algal bloom period has been carried out to derive size-fractioned chlorophyll concentration (CHL). The tuned three-component model was applied to the hourly GOCI images to identify the fractions of each phytoplankton size class for the entire CHL. Then, we investigated the distribution of phytoplankton community in terms of the size structure in the East Sea during the harmful Cochlodinium polykrikoides blooms in the summer of 2013.

Effect of Salinity Change on Biological Structure between Primary Producers and Herbivores in Water Column (해수층의 염분 변화가 일차생산자와 상위소비자의 크기구조에 미치는 영향)

  • SIN, YONGSIK;SOH, HOYOUNG;HYUN, BONGKIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.2
    • /
    • pp.113-123
    • /
    • 2005
  • Samples were collected to investigate the effect of salinity change on biological interaction between primary producers and herbivores in water column of the Youngsan estuary (Mokpo Harbor) at 8 stations from October 2003 to September 2004. The highest river freshwater inputs were introduced into the estuary from the Youngsan dike during summer (June and July 2004). Ranges of salinity were between 6 and 28.9 psu when the gates of dike were open whereas the ranges were between 24.4 and 30.3 psu when the gates were closed. Algal bloom occurred in February and July when the gates were not open at the upper region of the Youngsan estuary and the bloom was dominated $(70\%)$ by large cells of phytoplankton $(micro-sized;>20{\mu}m).\;Nano-sized (2-20{\mu}m)$ and pico-sized phytoplankton $(<2{\mu}m)$ were dominant in October, November 2003, June, August and September 2004 when the gates were open suggesting that size structure was affected by river discharge from the dike. Micro-and meso-zooplankton (herbivores) displayed the similar pattern to that of phytoplankton. The biomass of zooplankton was higher when the gates were closed than when the gates open and also the biomass was higher at the upper region of the harbor system. This results suggest that freshwater inputs affect size structure and biomass of phytoplankton by changing salinity, nutrient inputs, turbidity or light level In water column resulting in the change of the interaction between primary producters and herbivores in the Youngsan estuary.

Pore Gradient Nickel-Copper Nanostructured Foam Electrode (기공 경사화된 나노 구조의 니켈-구리 거품 전극)

  • Choi, Woo-Sung;Shin, Heon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.270-276
    • /
    • 2010
  • Nickel-copper foam electrodes with pore gradient micro framework and nano-ramified wall have been prepared by using an electrochemical deposition process. Growth habit of nickel-copper co-deposits was quite different from that of pure nickel deposit. In particular, the ramified structure of the individual particles was getting clear with chloride ion content in the electrolyte. The ratio of nickel to copper in the deposits decreased with the distance away from the substrate and the more chloride ions in the electrolyte led to the more nickel content throughout the deposits. Compositional analysis for the cross section of a ramified branch, together with tactical selective copper etching, proved that the copper content increased with approaching central region of the cross section. Such a composition gradient actually disappeared after heat treatment. It is anticipated that the pore gradient nickel-copper nanostructured foams presented in this work might be a promising option for the high-performance electrode in functional electrochemical devices.