• 제목/요약/키워드: Micro-nano structure

검색결과 281건 처리시간 0.03초

Small Molecular Solar Cells toward Improved Efficiency and Stability

  • 김지환;김효정;정원익;김태민;이영은;김세용;김장주
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.73-73
    • /
    • 2011
  • We will report a few methods to improve the efficiency and stability in small molecule based organic solar cells, including the formation of bulk heterojunctions (BHJs) through alternative thermal deposition (ATD), the use of a micro-cavity structure and interface modifications. By ATD which is a simple modification of conventional thermal evaporation, the thicknesses of alternative donor and acceptor layers were precisely controlled down to 0.1 nm, which is critical to form BHJs. The formation of a BHJ in copper(II) phthalocyanine (CuPc) and fullerene (C60) systems was confirmed by AFM, GISAXS and absorption measurements. From analysis of the data, we found that the CuPc|C60 films fabricated by ATD were composed of the nanometer sized disk shaped CuPc nano grains and aggregated C60, which explains the phase separation of CuPc and C60. On the other hand, the co-deposited CuPc:C60 films did not show the existence of separated CuPc nano grains in the CuPc:C60 matrix. The OPV cells fabricated using the ATD method showed significantly enhanced power conversion efficiency compared to the co-deposited OPV cells under a same composition [1]. We will also present by numerical simulation that adoption of microcavity structure in the planar heterojunction can improve the short circuit current in single and tandem OSCs [2]. Interface modifications also allowed us to achieve high efficiency and high stability OSCs.

  • PDF

Nano inclusions in sapphire samples from Sri Lanka

  • Jaijong, K.;Wathanakul, P.;Kim, Y.C.;Choi, H.M.;Bang, S.Y.;Choi, B.G.;Shim, K.B.
    • 한국결정성장학회지
    • /
    • 제19권2호
    • /
    • pp.84-89
    • /
    • 2009
  • The turbid/translucent, near colorless(milky) metamorphic sapphire samples from Sri Lanka have been characterized after the heat treatment in $N_2$ at $1650^{\circ}C$. As-received sapphire specimens became bluish-colored and exhibited more clarity after the heat treatment. It was found that the color change at inclusions zoning region is attributed by the dissolution. As received samples contain the micro/nano inclusions such as rutile($TiO_2$), ilmenite($FeTiO_3$), spinel($MgAl_{2}O_{4}$)/ulvospinel($Fe_{2}TiO_{4}$) and apatite($Ca_5(PO_4)_3$), which were dissolved by the heat treatment and form the blue color through $Fe^{2+}/Ti^{4+}$ charge transferring. The microstructures become different because as the dissolution of apatite($Ca_5(PO_4)_3(OH,F,Cl)$) in alumino silicates($Al_{2}SiO_{5}$) occurred, resulting in morphological change with the appearance of(Ca, Mg, Al) silicate on the surface. Both as-received and heat treated samples showed the rhombohedral crystal structure of $Al_{2}O_{3}$.

ZnO와 TiO2 함유 복합나노섬유의 제조와 유해물질분해 성능 평가 (Fabrication of ZnO and TiO2 Nanocomposite Fibers and Their Photocatalytic Decomposition of Harmful Gases)

  • 허윤선;이승신
    • 한국의류학회지
    • /
    • 제35권11호
    • /
    • pp.1297-1308
    • /
    • 2011
  • This research investigates the application of ZnO (zinc oxide) nanoparticles and $TiO_2$ (titanium dioxide) nanoparticles to polypropylene nonwoven fabrics via an electrospinning technique for the development of textile materials that can decompose harmful gases. To fabricate uniform ZnO nanocomposite fibers, two types of ZnO nanoparticles were applied. Colloidal $TiO_2$ nanoparticles were chosen to fabricate $TiO_2$ nano- composite fibers. ZnO/poly(vinyl alcohol) (PVA) and $TiO_2$/PVA nanocomposite fibers were electrospun under a variety of conditions that include various feed rates, electric voltages, and capillary diameters. The morphology of electrospun nanocomposite fibers was examined with a field-emission scanning electron micro- scope and a transmission electron microscope. Decomposition efficiency of gaseous materials (formaldehyde, ammonia, toluene, benzene, nitrogen dioxide, sulfur dioxide) by nanocomposite fiber webs with 3wt% nano-particles (ZnO or $TiO_2$) and 7$g/m^2$ web area density was assessed. This study shows that ZnO nanoparticles in colloid were more suitable for fabricating nanocomposite fibers in which nanoparticles are evenly dispersed than in powder. A heat treatment was applied to water-soluble PVA nanofiber webs in order to stabilize the electrospun nanocomposite fibrous structure against dissolution in water. ZnO/PVA and $TiO_2$/PVA nanofiber webs exhibited a range of degradation efficiency for different types of gases. For nitrogen dioxide, the degradation efficiency was 92.2% for ZnO nanocomposite fiber web and 87% for $TiO_2$ nanocomposite fiber web after 20 hours of UV light irradiation. The results indicate that ZnO/PVA and $TiO_2$/PVA nano- composite fiber webs have possible uses in functional textiles that can decompose harmful gases.

등통로각압축공정을 이용하여 제조된 Cu-15 wt%Ag 복합재의 미세구조 (Microstructural Evolution of Cu-15 wt%Ag Composites Processed by Equal Channel Angular Pressing)

  • 이인호;홍순익;이갑호
    • 대한금속재료학회지
    • /
    • 제50권12호
    • /
    • pp.931-937
    • /
    • 2012
  • The microstructure of Cu-15 wt%Ag composites fabricated by equal channel angular pressing (ECAP) with intermediate heat treatment at $320^{\circ}C$ was investigated by transmission electron microscopy (TEM) observations. Ag precipitates with a thickness of 20-40 nm were observed in the eutectic region of the Cu-15 wt%Ag composite solution treated at $700^{\circ}C$ before ECAP. The Cu matrix and Ag precipitates had a cube on cube orientation relationship. ECAPed composites exhibited ultrafine-grained microstructures with the shape and distribution dependent on the processing routes. For route A in which the sample was pressed without rotation between each pass, the Cu and Ag grains were elongated along the shear direction and many micro-twins were observed in elongated Cu grains as well as in Ag filaments. The steps were observed on coherent twin boundaries in Cu grains. For route Bc in which the sample was rotated by 90 degrees after each pass, a subgrain structure with misorientation of 2-4 degree by fragmentation of the large Cu grains were observed. For route C in which the sample was rotated by 180 degrees after each pass, the microstructure was similar to that of the route A sample. However, the thickness of the elongated grains along the shear direction was wider than that of the route A sample and the twin density was lower than the route A sample. It was found that more microtwins were formed in ECAPed Cu-15 wt%Ag than in the drawn sample. Grain boundaries were observed in relatively thick and long Ag filaments in Cu-15 wt%Ag ECAPed by route C, indicating the multi-crystalline nature of Ag filaments.

LPS-SiC 세라믹스 제조특성에 미치는 소결온도의 영향 (Effects of Sintering Temperature on Fabrication Properties of LPS-SiC Ceramics)

  • 박이현;정헌채;김동현;윤한기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.204-209
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, $SiC_f/SiC$ composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing fiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of $SiC_f/SiC$ composites by hot pressing method. In the present work, Monolithic LPS-SiC was fabricated by hot pressing method in Ar atmosphere at 1760 $^{\circ}C$, 1780 $^{\circ}C$, 1800 $^{\circ}C$ and 1820 $^{\circ}C$ under 20 MPa using $Al_2O_3-Y_2O_3$ system as sintering additives in order to low sintering temperature. The starting powder was high purity ${\beta}-SiC$ nano-powder with an average particle size of 30 nm. Monolithic LPS-SiC was evaluated in terms of sintering density, micro-structure, flexural strength, elastic modulus and so on. Sintered density, flexural strength and elastic modulus of fabricated LPS-SiC increased with increasing the sintering temperature. In the micro-structure of this specimen, it was found that grain of sintered body was grown from 30 nm to 200 nm.

  • PDF

코아-셀 구조를 가지는 전도성 폴리피롤 나노섬유를 이용한 메탄올 센서 제작 (Fabrication of Methanol Sensors Using Conductive Polypyrrole Nanofibers with a Core-Shell Structure)

  • 전태선;이성호;김용신
    • 센서학회지
    • /
    • 제23권6호
    • /
    • pp.383-387
    • /
    • 2014
  • Electrically conductive polypyrrole-polyvinylpyrrolidone (PPy-PVP) nanofiber mats with a core-shell structure have been successfully fabricated by a two-step process: the formation of FeCl3-containing PVP nanofiber mat by electrospinning, and the vapor-phase polymerization (VPP) of pyrrole monomer on the mat in a sealed chamber at room temperature. Surface morphology and chemical composition of the PPy-PVP mat were characterized by SEM, EDX and FTIR analyses. The as-prepared nonwoven mat was composed of PPy-PVP nanofibers with an average diameter of 300 nm. The sheet conductivity of the nanofiber mat was measured to be approximately 0.01 S/cm by a four-point probe. We have also investigated gas-sensing properties of PPy-PVP nanofiber mat upon exposure to methanol vapor. The PPy-PVP nanofiber sensors were observed to have excellent methanol-sensing performance. The nanofiber-based core-shell nanostructure could give an opportunity to fabricate a highly sensitive and fast response sensor due to its high surfaceto-volume ratio.

마이크로-필터 상에 소결 처리된 금속 나노입자 코팅에 의한 나노구조 기공층 멤브레인 필터 개발 (Development of Membrane Filters with Nanostructured Porous Layer by Coating of Metal Nanoparticles Sintered onto a Micro-Filter)

  • 이동근;박석주;박영옥;류정인
    • 대한기계학회논문집A
    • /
    • 제32권8호
    • /
    • pp.617-623
    • /
    • 2008
  • The membrane filter adhered with nanostructured porous layer was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto a conventional micron-fibrous metal filter as a substrate filter. The Sintered-Nanoparticle-Agglomerates-coated NanoStructured porous layer Membrane Filter (SNA-NSMF), whose the filtration performance was improved compared with the conventional metal membrane filters, was developed by adhesion of nanoparticle-agglomerates of dendrite structure sintered onto the micron-fibrous metal filter. The size of nanoparticle-agglomerates of dendrite structure decreased with increasing the sintering temperature because nanoparticle-agglomerates shrank. When shrinking nanoparticle-agglomerates were deposited and treated with heat onto the conventional micron-fibrous metal filter, pore size of nanostructured porous layer decreased. Therefore, pressure drops of SNA-NSMFs increased from 0.3 to 0.516 kPa and filtration efficiencies remarkably increased from 95.612 to 99.9993%.

추진제의 마이크로 스케일 상면 두께 예측 (Predicting Micro-Thickness of Phase Fronts in Propellants)

  • 여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.13-21
    • /
    • 2005
  • 이 논문은 발열 반응에서 상이 변화하는 물질의 연속 방정식에서 유도되는 안정된 파면의 구조를 고려했다. 특별히 액체와 기체, 고체와 액체 사이의 동적인 파면 구조를 수치적으로 연구하였다. 1차원 충격파 구조 분석에 근거한 본 연구에 의하면 연소 시 나노 사이즈의 파면이 존재한다고 추정한다. 설명을 위해, 증발과 응축에는 n-heptane이 사용되었고, 용해와 응고에는 HMX를 사용하였다. 이 개념의 확장은 로켓 추진제와 같이 액체, 고체 연료의 넓은 범위 모두를 포함한다.

  • PDF

Indium doping induced defect structure evolution and photocatalytic activity of hydrothermally grown small SnO2 nanoparticles

  • Zeferino, Raul Sanchez;Pal, Umapada;Reues, Ma Eunice De Anda;Rosas, Efrain Rubio
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.13-24
    • /
    • 2019
  • Well-crystalline $SnO_2$ nanoparticles of 4-5 nm size with different In contents were synthesized by hydrothermal process at relatively low temperature and characterized by transmission electron microscopy (TEM), microRaman spectroscopy and photoluminescence (PL) spectroscopy. Indium incorporation in $SnO_2$ lattice is seen to cause a lattice expansion, increasing the average size of the nanoparticles. The fundamental phonon vibration modes of $SnO_2$ lattice suffer a broadening, and surface modes associated to particle size shift gradually with the increase of In content. Incorporation of In drastically enhances the PL emission of $SnO_2$ nanoparticles associated to deep electronic defect levels. Although In incorporation reduces the band gap energy of $SnO_2$ crystallites only marginally, it affects drastically their dye degradation behaviors under UV illumination. While the UV degradation of methylene blue (MB) by undoped $SnO_2$ nanoparticles occurs through the production of intermediate byproducts such as azure A, azure B, and azure C, direct mineralization of MB takes place for In-doped $SnO_2$ nanoparticles.

평판형 MEMS 고체 추진제 추력기 요소 제작 및 성능 평가 (Fabrication, Performance Evaluation of Components of Planar Type MEMS Solid Propellant Thruster)

  • 박종익;권세진
    • 한국항공우주학회지
    • /
    • 제36권6호
    • /
    • pp.581-586
    • /
    • 2008
  • 기존의 수 mN급의 MEMS 고체 추진제 추력기는 실제 마이크로/나노 위성체의 킥모터,지능탄(Smart bomb)의 측추력기로 응용하기에는 추력 레벨이 너무 낮다는 한계가 있었다. 이 연구에서는 고체 추진제의 연소 면적을 증대시킴으로써 추력 레벨이 향상된 MEMS 고체 추진제 추력기의 제작 가능성을 확인하고 연소 실험을 통해서 구조체의 안정성을 확인하였으며 직접 추력을 측정하여 수백 mN급의 단위 추력기를 개발하였다. 연소 챔버와 노즐, 덮개 층은 감광성 유리 기판을 이용하여 제작하였으며 마이크로 점화기는 파이렉스 기판 위에 300 ㎚ 높이의 니켈과 크롬을 페터닝(patterning)하여 제작하였다. 마이크로 점화기의 성능 해석과 실험을 통한 검증을 수행하여 고체 추진제의 점화를 위한 공급 전력을 계산하였으며 힘 센서를 통하여 추력기의 추력을 측정하였다. 측정된 추력은 K=15와 20인 경우에 300, 600 mN 이었다.