• Title/Summary/Keyword: Micro-nano structure

Search Result 281, Processing Time 0.028 seconds

Fabrication of a Superhydrophobic Water-Repellent Mesh for Underwater Sensors

  • An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.100-104
    • /
    • 2013
  • A superhydrophobic mesh is a unique structure that blocks water, while allowing gases, sound waves, and energy to pass through the holes in the mesh. This mesh is used in various devices, such as gas- and energy-permeable waterproof membranes for underwater sensors and electronic devices. However, it is difficult to fabricate micro- and nano-structures on three-dimensional surfaces, such as the cylindrical surface of a wire mesh. In this research, we successfully produced a superhydrophobic water-repellent mesh with a high contact angle (> $150^{\circ}$) for nanofibrous structures. Conducting polymer (CP) composite nanofibers were evenly coated on a stainless steel mesh surface, to create a superhydrophobic mesh with a pore size of $100{\mu}m$. The nanofiber structure could be controlled by the deposition time. As the deposition time increased, a high-density, hierarchical nanofiber structure was deposited on the mesh. The mesh surface was then coated with Teflon, to reduce the surface energy. The fabricated mesh had a static water contact angle of $163^{\circ}$, and a water-pressure resistance of 1.92 kPa.

Vibration analysis of double-walled carbon nanotubes based on Timoshenko beam theory and wave propagation approach

  • Emad Ghandourah;Muzamal Hussain;Amien Khadimallah;Abdulsalam Alhawsawi;Essam Mohammed Banoqitah;Mohamed R. Ali
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.521-525
    • /
    • 2023
  • This paper concerned with the vibration of double walled carbon nanotubes (CNTs) as continuum model based on Timoshenko-beam theory. The vibration solution obtained from Timoshenko-beam theory provides a better presentation of vibration structure of carbon nanotubes. The natural frequencies of double-walled CNTs against half axial wave mode are investigated. The frequency decreases on decreasing the half axial wave mode. The shape of frequency arcs is different for various lengths. It is observed that model has produced lowest results for C-F and highest for C-C. A large parametric study is performed to see the effect of half axial wave mode on frequencies of CNTs. This numerically vibration solution delivers a benchmark results for other techniques. The comparison of present model is exhibited with previous studies and good agreement is found.

Self-assembly of Fine Particles Applied to the Production of Antireflective Surfaces

  • Kobayashi, Hayato;Moronuki, Nobuyuki;Kaneko, Arata
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 2008
  • We introduce a new fabrication process for antireflective structured surfaces. A 4-inch silicon wafer was dipped in a suspension of 300-nm-diameter silica particles dispersed in a toluene solution. When the wafer was drawn out of the suspension, a hexagonally packed monolayer structure of particles self-assembled on almost the complete wafer surface. Due to the simple process, this could be applied to micro- and nano-patterning. The self-assembled silica particles worked as a mask for the subsequent reactive ion etching. An array of nanometer-sized pits could be fabricated since the regions that correspond to the small gaps between particles were selectively etched off. As etching progressed, the pits became deeper and combined with neighboring pits due to side-etching to produce an array of cone-like structures. We investigated the effect of etching conditions on antireflection properties, and the optimum shape was a nano-cone with height and spacing of 500 nm and 300 nm, respectively. This nano-structured surface was prepared on a $30\;{\times}\;10-mm$ area. The reflectivity of the surface was reduced 97% for wavelengths in the range 400-700 nm.

Dielectric properties of bismuth magnesium niobate thin films deposited by sputtering using two main phase target in the system (두 메인 상의 타겟을 사용하여 스퍼터링으로 증착한 bismuth magnesium niobate 박막의 유전특성)

  • Ahn, Jun-Ku;Kim, Hae-Won;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.264-264
    • /
    • 2007
  • $B_2Mg_{2/3}/Nb_{4/3}O_7\;(B_2MN)$ thin films and $Bi_{3/2}MgNb_{3/2}O_7\;(B_{1.5}MN)$ thin films were deposited as a function of various deposition temperatures on Pt/$TiO_2/SiO_2$/Si substrates by radio frequency magnetron sputtering system. Both of their thin films are shown to crystalline phase at $500^{\circ}C$, deposition temperature, using 100W RF power. The composition of them and structural micro properties are investigated by RBS spectrum and SEM, AFM. 200 nm-thick $B_2MN$ thin films were deposited at room temperature had capacitance density of $151nF/cm^2$ at 100kHz, dissipation factor of 0.003 and had capacitance density of $584nF/cm^2$ at 100kHz, dissipation factor of 0.0045 at $500^{\circ}C$ deposition temperature. Both of their dielectric constant deposited at room temperature and at $500^{\circ}C$ were each approximately 40 and 100.

  • PDF

Non-polar and Semi-polar InGaN LED Growth on Sapphire Substrate

  • Nam, Ok-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.51-51
    • /
    • 2010
  • Group III-nitride semiconductors have been widely studied as the materials for growth of light emitting devices. Currently, GaN devices are predominantly grown in the (0001) c-plane orientation. However, in case of using polar substrate, an important physical problem of nitride semiconductors with the wurtzite crystal structure is their spontaneous electrical polarization. An alternative method of reducing polarization effects is to grow on non-polar planes or semi-polar planes. However, non-polar and semipolar GaN grown onto r-plane and m-plane sapphire, respectively, basically have numerous defects density compared with c-plane GaN. The purpose of our work is to reduce these defects in non-polar and semi-polar GaN and to fabricate high efficiency LED on non/semi-polar substrate. Non-polar and semi-polar GaN layers were grown onto patterned sapphire substrates (PSS) and nano-porous GaN/sapphire substrates, respectively. Using PSS with the hemispherical patterns, we could achieve high luminous intensity. In case of semi-polar GaN, photo-enhanced electrochemical etching (PEC) was applied to make porous GaN substrates, and semi-polar GaN was grown onto nano-porous substrates. Our results showed the improvement of device characteristics as well as micro-structural and optical properties of non-polar and semi-polar GaN. Patterning and nano-porous etching technologies will be promising for the fabrication of high efficiency non-polar and semi-polar InGaN LED on sapphire substrate.

  • PDF

The Effect of Heat Treatment on the Thermal Expansion Behavior of Electroformed Nano-crystalline Fe-42 wt%Ni Alloy

  • Lee, Minsu;Han, Yunho;Yim, Tai Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.293-296
    • /
    • 2014
  • Fe-Ni has been of great interest because it is known as one of low thermal expansion alloys as various application areas. This alloy was fabricated by electroforming process, and effect of heat treatment on thermal expansion and hardness was investigated. Nano-crystalline structure of 13.3 - 63.5 nm in size was observed in the as-deposited alloy. To investigate the effect of heat treatment on grain growth and mechanical/thermal properties, we conducted hardness and coefficient of thermal expansion (CTE). From this, we confirmed these properties were varied by heat treatment. In this nano-crystalline alloy, we could observe abnormal behavior in thermal expansion between $350-400^{\circ}C$. Additionally, an abrupt change in hardness has also been observed. However, once the grains grow up to micro-sized the mechanical and thermal properties mentioned above were stabilized similar to those of bulk alloys due to heat treatment.

Fabrication of Micro-/Nano- Hybrid 3D Stacked Patterns (나노-마이크로 하이브리드 3차원 적층 패턴의 제조)

  • Park, Tae Wan;Jung, Hyunsung;Bang, Jiwon;Park, Woon Ik
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.387-392
    • /
    • 2018
  • Nanopatterning is one of the essential nanotechnologies to fabricate electronic and energy nanodevices. Therefore, many research group members made a lot of efforts to develop simple and useful nanopatterning methods to obtain highly ordered nanostructures with functionality. In this study, in order to achieve pattern formation of three-dimensional (3D) hierarchical nanostructures, we introduce a simple and useful patterning method (nano-transfer printing (n-TP) process) consisting of various linewidths for diverse materials. Pt and $WO_3$ hybrid line structures were successfully stacked on a flexible polyimide substrate as a multi-layered hybrid 3D pattern of Pt/WO3/Pt with line-widths of $1{\mu}m$, $1{\mu}m$ and 250 nm, respectively. This simple approach suggests how to fabricate multiscale hybrid nanostructures composed of multiple materials. In addition, functional hybrid nanostructures can be expected to be applicable to various next-generation electronic devices, such as nonvolatile memories and energy harvesters.

Fabrication of Biodegradable Disc-shaped Microparticles with Micropattern using a Hot Embossing Process with Porous Microparticles

  • Hwang, Ji-Yea;Choy, Young-Bin;Seo, Soon-Min;Park, Jung-Hwan
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.3
    • /
    • pp.147-151
    • /
    • 2011
  • This paper demonstrates the development of a method for preparing micropatterned microdiscs in order to increase contact area with cells and to change the release pattern of drugs. The microdiscs were manufactured with hot embossing, where a polyurethane master structure was pressed onto both solid and porous microparticles made of polylactic-co-glycolic acid at various temperatures to form a micropattern on the microdiscs. Flat microdiscs were formed by hot embossing of porous microparticles; the porosity allowed space for flattening of the microdiscs. Three types of micro-grooves were patterned onto the flat microdiscs using prepared micropatterned molds: (1) 10 ${\mu}M$ deep, 5 ${\mu}M$ wide, and spaced 2 ${\mu}M$ apart; (2) 10 ${\mu}M$ deep, 9 ${\mu}M$ wide, and spaced 5 ${\mu}M$ apart; and (3) 10 ${\mu}M$ deep, 50 ${\mu}M$ wide, and spaced 50 ${\mu}M$ apart. This novel microdisc preparation method using hot embossing to create micropatterns on flattened porous microparticles provides the opportunity for low-cost, rapid manufacture of microdiscs that can be used to control cell adhesion and drug delivery rates.

Eutectic Temperature Effect on Au Thin Film for the Formation of Si Nanostructures by Hot Wire Chemical Vapor Deposition

  • Ji, Hyung Yong;Parida, Bhaskar;Park, Seungil;Kim, MyeongJun;Peck, Jong Hyeon;Kim, Keunjoo
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • We investigated the effects of Au eutectic reaction on Si thin film growth by hot wire chemical vapor deposition. Small SiC and Si nano-particles fabricated through a wet etching process were coated and biased at 50 V on micro-textured Si p-n junction solar cells. Au thin film of 10 nm and a Si thin film of 100 nm were then deposited by an electron beam evaporator and hot wire chemical vapor deposition, respectively. The Si and SiC nano-particles and the Au thin film were structurally embedded in Si thin films. However, the Au thin film grew and eventually protruded from the Si thin film in the form of Au silicide nano-balls. This is attributed to the low eutectic bonding temperature ($363^{\circ}C$) of Au with Si, and the process was performed with a substrate that was pre-heated at a temperature of $450^{\circ}C$ during HWCVD. The nano-balls and structures showed various formations depending on the deposited metals and Si surface. Furthermore, the samples of Au nano-balls showed low reflectance due to surface plasmon and quantum confinement effects in a spectra range of short wavelength spectra range.

Thermoelectric characteristics depend on compositions of $Bi_2Te_3$ in mixed alloy with PbTe

  • Jung, Kyoo-Ho;Yim, Ju-Hyuk;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.11-11
    • /
    • 2010
  • In order to design for nano structured materials with enhanced thermoelectric properties, the alloys in the pseudo-binary $Bi_2Te_3$-PbTe system were investigated for their micro structure and thermal properties. For this synthesis the liquid alloys were cooled by water quenching method. The micro structure images were taken by using electron probe micro analyzer (EPMA). Dendritic and lamellar structures were clearly observed with the variation in the composition ratio between $Bi_2Te_3$ and PbTe. It was confirmed that a metastable compounds is $PbBi_2Te_4$ in the The $Bi_2Te_3$-PbTe system. The change in the composition increasing $Bi_2Te_3$ ratio causes to change structure from dendritic to lamellar. Seebeck coefficient of alloys 5 which the mixture rate of $Bi_2Te_3$ is 83% was measured as the highest value. In contrast, the others decreased by increasing $Bi_2Te_3$. n-type characteristics was observed at all condition except alloy 6 which $Bi_2Te_3$ ration is 91%. The power factors of all samples were calculated with Seebeck coefficient and resistivity. Also the thermal conductivity was measured by using laser flash analyzer (LFA). In this work, the microstructures and thermal properties have been measured as a function of ratio of $Bi_2Te_3$ in the $Bi_2Te_3$-PbTe system.

  • PDF