• Title/Summary/Keyword: Micro-mechanics

Search Result 374, Processing Time 0.028 seconds

Strength and durability of ultra fine slag based high strength concrete

  • Sharmila, Pichaiya;Dhinakaran, Govindasamy
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.675-686
    • /
    • 2015
  • The use of ground granulated blast furnace slag (GGBFS) from steel industries waste is showing perspective application in civil engineering as partial substitute to cement. Use of such waste conserves natural resources and minimizes the space required for landfill. The GGBFS used in the present work is of ultra fine size and hence serves as micro filler. In this paper strength and durability characteristics of ultra fine slag based high strength concrete (HSC) (with a characteristic compressive strength of 50 MPa) were studied. Cement was replaced with ultra fine slag in different percentages of 5, 10, and 15% to study the compressive strength, porosity, resistances against sulfate attack, sorptivity and chloride ion penetration. The experiments to study compressive strength were conducted for different ages of concrete such as 7, 28, 56, and 90 days. From the detailed investigations with 16 mix combinations, 10% ultra fine slag give better results in terms of strength and durability characteristics.

Design of the output Trap-CL filter for photovoltaic micro-inverter (태양광 발전용 마이크로 인버터의 출력 Trap-CL 필터 설계)

  • Noh, Yong-Su;Ji, Young-Hyok;Kim, Jun-Gu;Lee, Tae-Won;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.205-206
    • /
    • 2011
  • 태양광 발전용 마이크로 인버터는 PV 모듈에 직접 설치되기 때문에 크기, 무게 등이 중요한 설계 요소다. 따라서 출력 필터 설계 시 전력 품질 뿐만 아니라 필터에 사용되는 수동 소자의 크기 또한 고려해야 한다. 본 논문에서는 마이크로 인버터용 출력 필터로서 Trap-CL 구조를 분석하고, 필터의 소형화를 고려한 설계 기법을 제안한다. 설계 된 Trap-CL 필터의 특성을 단상 플라이백 인버터에 적용하여 확인하였으며, 기존 플라이백 인버터에 사용되던 CL 필터와의 비교를 통하여 그 타당성을 검증하였다.

  • PDF

Mechanical Properties of Hydrated Cement Paste: Development of Structure-property Relationships

  • Ghebrab, Tewodros T.;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • Theoretical models based on modern interpretations of the morphology and interactions of cement hydration products are developed for prediction of the mechanical properties of hydrated cement paste (hcp). The models are based on the emerging nanostructural vision of calcium silicate hydrate (C-S-H) morphology, and account for the intermolecular interactions between nano-scale calcium C-S-H particles. The models also incorporate the effects of capillary porosity and microcracking within hydrated cement paste. The intrinsic modulus of elasticity and tensile strength of hydrated cement paste are determined based on intermolecular interactions between C-S-H nano-particles. Modeling of fracture toughness indicates that frictional pull-out of the micro-scale calcium hydroxide (CH) platelets makes major contributions to the fracture energy of hcp. A tensile strength model was developed for hcp based on the linear elastic fracture mechanics theories. The predicted theoretical models are in reasonable agreements with empirical models developed based on the experimental performance of hcp.

SEISMIC MONITORING IN SURFACE MINES

  • Ajay Kumar, L.;David Raj, D. Edwin;Renaldy, T. Amrith;Vinoth, S.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.174-180
    • /
    • 2009
  • This paper gives a brief review of seismicity and seismic monitoring in surface mines. A summary of various researches related to seismicity is presented. Our research focuses on the understanding of seismicity and the application of analytical techniques to seismicity. Seismic monitoring plays an important role in the identification of potential failure planes and thereby predict potential failures. Much of the instrumentation used in our research is derived from earthquake monitoring systems. The major aspects in seismic monitoring are an instrumentation used, size of the network and data acquisition systems. Seismic monitoring in surface mines could be successfully applied to the improvement of safety standards in slope stability.

Experimental Study of Flexural Behavior in Flexural Members Based on Repair Thickness of ECC (ECC 재료보강 두께에 따른 휨 부재의 휨 거동에 관한 실험적 연구)

  • Kyoung Min Su;Kim Dong Wan;Bae Byung Won;Jun Kyung Suk;Lim Yun Mook;Kim Jang Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.192-195
    • /
    • 2004
  • Recently, the development of construction materials is rapidly advancing. Especially, the rate of development of cement based construction materials is much quicker than steel or composite materials. In order to optimize the ductility and strength of cement based materials, Micro-mechanics based fiber concrete called Engineered Cement Composite (ECC) is developed and studied extensively by many researchers in the field. Due to ECC's remarkable flexural strain and strength capacities, many leading nation (i.e., US, Japan, and European countries) are currently using ECC in actual constructions. In this study, ECC with internationally competitive material capacities is manufactured using domestic materials. Then, unreinforced concrete beams are repaired using ECC with $10\%,\;20\%,\;30\%$ of concrete specimen height Using 4 point bending test, the flexural strength of repaired flexural members are determined. The results show that ECC manufactured with domestic materials can be effectively used for repairing materials.

  • PDF

An Evaluation of the Effect of Micro-cracks on Macro Elastic Moduli (매크로 탄성 계수에 미치는 마이크로 크랙의 영향 평가)

  • Kang, Sung-Soo;Kim, Hong-Gun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.97-103
    • /
    • 2006
  • A meso-scale analysis method using the natural element method, which is a kind of meshless method, is proposed for the analysis of material damage of brittle microcracking solids such as ceramic materials, concrete and rocks. The microcracking is assumed to occur along Voronoi edges in the Voronoi diagram generated using the nodal points as the generators. The mechanical effect of microcracks is considered by controlling the material constants in the neighborhood of the microcracks. The macro elastic moduli of anisotropic as well as isotropic solids containing a number of randomly distributed microcracks are calculated in order to demonstrate the validity of the proposed method.

Analysis of corrugated board panels under compression load

  • Biancolini, M.E.;Brutti, C.;Porziani, S.
    • Steel and Composite Structures
    • /
    • v.9 no.1
    • /
    • pp.1-17
    • /
    • 2009
  • This paper is focused on the buckling and post buckling behaviour of rectangular corrugated board panels simply supported and subjected to compression load. The aim of the work is to understand the failure mechanism of investigated structure in order to quantify the effect of design parameters on the strength of a panel of given geometry. Two numerical models were developed adopting the finite element method. In the first one the corrugated board is represented by means of shell elements adopting an equivalent material, in the second the local structure is described in full detail modelling both straight and corrugated layers by means of shell elements and representing the connection between layers by special interface elements. The model correctness was checked by the comparison between out of plane central displacement predicted by the models and the experimental values found in literature. For the same case the effect of panel planarity error was evaluated. Finally a parametric analysis to investigate the effect of design parameters was carried out.

Corrections for effects of biaxial stresses in annealed glass

  • Nurhuda, Ilham;Lam, Nelson T.K.;Gad, Emad F.;Calderone, Ignatius
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.303-316
    • /
    • 2011
  • Experimental tests have shown that glass exhibits very different strengths when tested under biaxial and uniaxial conditions. This paper presents a study on the effects of biaxial stresses on the notional ultimate strength of glass. The study involved applying the theory of elasticity and finite element analysis of the Griffith flaw in the micro scale. The strain intensity at the tip of the critical flaw is used as the main criterion for defining the limit state of fracture in glass. A simple and robust relationship between the maximum principal stress and the uniaxial stress to cause failure of the same glass specimen has been developed. The relationship has been used for evaluating the strength values of both new and old annealed glass panels. The characteristic strength values determined in accordance with the test results based on 5% of exceedance are compared with provisions in the ASTM standard.

Design of Torsion-typed Smooth Picture Actuator for DLP Projection TV

  • Moon, Yang-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.564-568
    • /
    • 2006
  • Smooth picture module is operated by vibration to tilt the light from the DMD (digital micro mirror device) of DLP projection TV, which makes the screen of the TV smoother and DMD chip cost lower. To satisfy the vibration characteristics of smooth picture module, it is designed by optimizing moment of inertia, spring constant and damping coefficient, using structural and fluid dynamic simulation that showed a good agreement with experimental data. To reduce the material cost and moment of inertia, engineering plastic is used and the reliability is estimated. A VCM (voice coil motor) type actuator for smooth picture has to satisfy performance requirements such as higher driving force, lower power consumption, and lower cost. The initial design and optimization for VCM was performed using FE analysis. It allowed us to optimize the design of magnetic circuit of the proposed actuator to obtain higher force while maintaining a lower cost.

  • PDF

An Analytical Study on Prediction of Effective Properties n Porous and Non-Porous Piezoelectric Composites

  • Lee Jae-Kon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2025-2031
    • /
    • 2005
  • Eshelby type micro mechanics model with a newly developed piezoelectric Eshelby tensor is proposed for predicting the effective electroelastic properties of the piezoelectric composite. The model is applied for piezoelectric solids containing both porosities and metal inhomogeneities. The effective electroelastic moduli of the composites such as stiffness, piezoelectric constants, and dielectric constants are predicted by the present model, which are extensively compared with the existing experimental results from the literatures. The validity of Eshelby type model for predicting the effective properties of the composite is thoroughly examined. It can be concluded from this study that a new mechanism is needed to compute correctly the dielectric constants among the effective properties of the composites.