• Title/Summary/Keyword: Micro-display

Search Result 479, Processing Time 0.034 seconds

Fabrication of a stamper and injection molding for micro pattern product (미세 패턴 제품 마스터 제작 및 성형 공정 기술 개발)

  • Yoo Y.E;Seo Y.H;Je T.J.;Choi D.S
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.216-219
    • /
    • 2005
  • In recent, LCD becomes one of the main display devices and expected to have quite good market share during the next couple of years. The demand for low cost and high performance, however, is becoming severe as the competition among other display devices like PDP, OLED increases. To satisfy this demand from market, we need to optimize the parts or modules of the LCD, reduce the number of the assemble and enhance the process for the high brightness and uniformity of the LCD. The LCD consists mainly of LCD panel and Backlight unit(BLU). BLU, which takes big portion of the cost for LCD, consists of light source, light guide panel and many kinds of functional film. Recently light guide panel or film for BLU has micro patterns on its surface and consequently to reduce the number of parts and enhace the brightness and its uniformity. In this study, some methodologies for the fabrication of the master/stamper and molding the light quide panel are introduced for 50um pitch of prizm patterned substrate. Mechanical machining process is adapted and optimized to fabricate micro patterned stamper using the micro cutting tool. Injection molding technology is also developed to obtain uniformly replicated micro patterned products.

  • PDF

Effect of the Off-axis distance of the Electron Emitting Source in Micro-column (마이크로 칼럼의 전자 방출원 위치 오차의 영향)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 2010
  • Currently miniaturized electron-optical columns find their way into electron beam lithography systems. For better lithography process, it is required to make smaller spot size and longer working distance. But, the micro-columns of the multi-beam lithography system suffer from chromatic and spherical aberration, even when the electron beam is exactly on the symmetric axis of the micro-column. The off-axis error of the electron emitting source is expected to become worse with increasing off-axis distance of the focusing spot. Especially the electron beams far from the system optical axis have a non-negligible asymmetric intensity distribution in the micro-column. In this paper, the effect of the off-axis e-beam source is analyzed. To analyze this effect is to introduce a micro-column model of which the e-beam emitting source is aligned with the center of the electron beam by shifting them perpendicular to the system optical axis. The presented solution can be used to analysis the performance of the multi-electron-beam system. The performance parameters, such as the working distances and the focusing position are obtained by the computational simulations as a function of the off-axis distance of the emitting source.

Surface energy control of ITO substrate for Inkjet printing of PEDOT/PSS

  • Kim, M.K.;Lee, S.H.;Hwang, J.Y.;Kang, K.T.;Kang, H.S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.523-525
    • /
    • 2008
  • Inkjet printing is being considered as an alternative to the conventional lithography in the electronic industry. Surface energy control of substrate is a critical issue in controlling the dimension of microstructures by the inkjet printing. This study introduces the surface energy control of ITO substrate for in/q'et printing of PEDOT/PSS.

  • PDF

Optical System Design of Compact Head-Up Display(HUD) using Micro Display (마이크로 디스플레이를 이용한 소형 헤드업 디스플레이 광학계 설계)

  • Han, Dong-Jin;Kim, Hyun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6227-6235
    • /
    • 2015
  • The HUD has recently been downsized due to the development of micro display and LED technology as a see through information display device, gradually expands the application areas. In this paper, using a DLP micro display device designed a compact head-up display(HUD) optical system for biocular observation of the image exhibition area 5 inches. It was analyzed for each design element of the optical system in order to design a compacted HUD. DLP, projection optical system and concave image combiner were discussed the design approach and the characteristics. Through a connection structure analysis of each optical system, detailed design specifications were set up and designed the optical system in detail. Put a folded configuration in the form of a white diffuse reflector between the projection lens and concave image combiner was designed to be independent, respectively. Distance of the projected image is adjustable up to approximately 2m ~ infinity and observation distance is 1m. Resolution could be recognized by 1 ~ 2pixels in HD($1,280{\times}720pixels$) class, various characters and symbols could be read. In addition, color navigation map, daytime video camera and thermal imaging cameras can be displayed.

Optical System Design for Projection TV using Micro Display (마이크로 디스플레이를 이용한 프로젝션 TV용 광학계 설계)

  • Park, Sung-Chan;Lee, Jung-Yul
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.240-247
    • /
    • 2006
  • This paper discusses the optical system design for projection TV using LCOS type micro display, which provides the high resolution, slim depth, and a large screen of more than 60 inches. We analyzed the relationship between the illumination system, projection lens, color separation & recombination system, and micro display. From this quantitative analysis, the starting data for the optimum light engine was defined, and all optical systems were designed by an optimization process. Three RGB panels were proposed for a high luminence system, and the four prisms symmetrically located make equal optical path lengths for the RGB rays. This color separation & recombination system enables the a compact illumination system. Also, in order to the slim light engine with high resolution, the folded projection lens system was designed by inserting a mirror between projection lenses.

Numerical Analysis of Micro-Discharge in Plasma Display Panel Using 2-Fluid, 2-Dimensional MD equations (2차원, 2유체 MHD 식을 이용한 플라즈마 디스플레이 판넬의 미소 방전 특성 해석)

  • Choi, Kyung-Cheol;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.911-914
    • /
    • 1992
  • We have investigated the micro-discharge in plasma display panel using 2 dimensional 2 fluid MHD equations. Plasma display utilizes the physical phenomena of the normal glow or abnormal glow and is considered to be able to provide the largest display area among various flat panel. 2 fluid, 2 dimensional Magneto-Hydro-Dynamic equations are applied to Computational field of 100${\times}$800${\mu}m^2$. Time varing glows and after-glows were investigated for 11 $\mu$sec. We obtained the distribution of the microscopic variables such as the density, temperature, velocity of Ne+Ar0.1% gas plasma. During the first 6$\mu$ sec, glow discharge dued to DC pulse was investigated. Time varing phenomena of after-glow was also investigated during the last 5 $\mu$set. From results, it was found that the driving efficiency of a DC Plasma Display Panel could be improved when the diffusion of ions and electrons are controlled by the pulses applied to the auxiliary anode.

  • PDF

Machining Process for Micro Pyramid Pattern Mold (미세 피라미드 패턴 금형 가공공정 연구)

  • Je, T.J.;Shin, Y.J.;Lee, E.S.;Choi, D.S.;Hong, S.M.;Kang, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.55-59
    • /
    • 2007
  • Technologies of super-precision micro pattern mold machining and high-performance optical films manufacturing using thereof forms the basis of recent display industries which have developed remarkably. Especially, it is the light guide plates and high luminous intensity prism sheets at BLU or FLU in LCD and lenses at virtual keyboard's display to be manufactured by micro machining technology. One way the industry requires to do that is by developing high-performance light guide plates or films which are existing light guide plates, diffusion films and luminance enhancement prism films all in one. In this research effort, basic processing of the micro pyramid structure by shaping method is proposed. Experiments of mold machining of pitch $20{\mu}m$ tetrahedral pyramid and pitch $100{\mu}m$ trihedral pyramid using a $90^{\circ}$ diamond tool were conducted to identify a variety of machining features, such as cutting forces, conditions of the surface, shapes of chips, and influence of materials.

  • PDF

A study on the fabrication method of middle size LGP using continuous micro-lenses made by LIGA reflow

  • Kim, Jong-Sun;Ko, Young-Bae;Hwang, Chul-Jin;Kim, Jong-Deok;Yoon, Kyung-Hwan
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.171-176
    • /
    • 2007
  • LCD-BLU (Liquid Crystal Display-Back Light Unit) of medium size is usually manufactured by forming numerous dots with $50{\sim}300\;{\mu}m$ in diameter by etching process and V-grove shape with $50\;{\mu}m$ in height by mechanical cutting process. However, the surface of the etched dots is very rough due to the characteristics of the etching process and V-cutting needs rather high cost. Instead of existing optical pattern made by etching and mechanical cutting, 3-dimensional continuous micro-lens of $200\;{\mu}m$ in diameter was applied in the present study. The continuous micro-lens pattern fabricated by modified LIGA with thermal reflow process was tested to this new optical design of LGP. The manufacturing process using LIGA-reflow is made up of three stages as follows: (i) the stage of lithography, (ii) the stage of thermal reflow process and (iii) the stage of electroplating. The continuous micro-lens patterned LGP was fabricated with injection molding and its test results showed the possibility of commercial use in the future.

Digital Holography - Principles and Challenges of Holographic Projection Systems

  • Schwerdtner, A.;Olaya, J.C.;Haussler, R.;Leister, N.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1753-1756
    • /
    • 2007
  • In the field of 3D display, holographic displays are the only technology allowing optimal user comfort. We have developed systems based on compact projection optics, that allow advantageous new features, like large size full-color3D scenes generated at high rate on a micro-display with state of the art resolution.

  • PDF