• 제목/요약/키워드: Micro-controller

검색결과 616건 처리시간 0.03초

CAN을 이용한 자동차용 Network 구현 (Network Implementation for automobiles using CAN)

  • 허화라
    • 경영과정보연구
    • /
    • 제2권
    • /
    • pp.335-354
    • /
    • 1998
  • In this study I construct CAN(Controller Area Network) for automobiles similar to LAN(Local Area Network) and build communication modules in the major part of an automobile to link several sub-systems. Since each station replaces the communication function of sub-systems and has various types of sensor, actuator, controller, and switch, every information about automobile's status is obtained from the network. The manufactured system showed a superior capability. The following is the contents of study. 1. The definition of communication packet through the analysis of CAN protocol. 2. The Design of modules using micro-controller 80C196CA. 3. The Network configuration.

  • PDF

고속운전을 위한 스테핑 모터 디지털 제어기 (A Digital Controller of Stepping Motors for High Speed Driving)

  • 이치환;이명준;이성희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.45-47
    • /
    • 2005
  • A digital controller of stepping motors is designed for removing mid-range resonance. Rotor oscillation is detected from motor currents and the microprocessor generates frequency modulation taking into account rotor oscillation. ATmega16 is employed and the controller drives stepping motors up to 3000[rpm] at micro stepping.

  • PDF

마이크로 자이로스코프를 위한 PD 제어기 설계 및 성능시험 (PD controller design for Micro Gyroscope and Its Performance Test)

  • 성운탁;송진우;이장규;강태삼
    • 한국항공우주학회지
    • /
    • 제33권3호
    • /
    • pp.47-56
    • /
    • 2005
  • 본 논문에서는 마이크로 자이로스코프를 위한 폐루프 제어기를 설계하여 그 성능이 개선됨을 보였다. 마이크로 자이로스코프는 높은 Q값을 가지는 시스템으로 그 특성상 공진 영역에서 동작하게 되는데, 개루프로 동작할 경우 선형성, 대역폭 등의 성능에 제약이 있게 된다. 폐루프 제어기는 개루프 동작시의 이러한 제약을 극복하고 성능을 개선할 수 있도록 한다. 본 연구에서는 PD 제어기를 적용하였으며 실험 대상이 된 마이크로 자이로스코프는 서울대에서 설계하고 Bosch foundry에서 제작한 SNU-Bosch MEMS 자이로스코프를 사용하였다. 실험을 통해 폐루프 제어기의 성능을 검증한 결과 대역폭은 35Hz에서 78Hz로, 선형성은 2.07%에서 0.504%로, 바이어스 안정도는 0.066deg/sec에서 0.043deg/sec로 개선되는 것을 확인할 수 있었다.

항공기 3차원 충돌회피 알고리즘 구현과 실시간 운영체계를 이용한 Micro Controller Unit의 성능 비교 (Implementation of 3-D Collision Avoidance Algorithm and Comparison of Micro Controller Unit's Performance using Real-Time Operating System)

  • 임지성;김동신;박인혁;이상철
    • 항공우주시스템공학회지
    • /
    • 제12권5호
    • /
    • pp.48-53
    • /
    • 2018
  • 본 논문에서는 RTOS과 항공기의 3차원 충돌회피 알고리즘을 세 개의 MCU에 적용하여 각 MCU의 성능을 비교하였다. MCU는 많이 사용되는 Microchip Technology사의 ATmega2560과 STM사의 ARM Cortex-M3, ARM Cortex-M4를 선정하였으며, RTOS는 공개되어 있는 FreeRTOS 를 사용하였다. 성능을 확인하기 위해 적용된 3차원 충돌회피 알고리즘은 수직회피와 수평회피를 통합한 알고리즘이며 C++로 구현하였다. MCU의 성능은 각 MCU의 사용 메모리와 계산 시간을 측정하여 비교하였다. 비교 결과 세 MCU 중, 계산 시간은 ARM Cortex-M4가 빨랐으며, ATmega2560이 적은 메모리를 사용하였다.

분산전원 상세모델을 적용한 DC Micro-grid의 동작특성 분석 (Operational Characteristic Analysis of DC Micro-grid with Detail Model of Distributed Generation)

  • 이지헌;권기현;한병문;차한주
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2175-2184
    • /
    • 2009
  • This paper describes operational analysis results of the DC micro-grid using detailed model of distributed generation. Detailed model of wind power generation, photo-voltaic generation, fuel-cell generation was implemented with the user-defined model of PSCAD/EMTDC software that is coded with C-language. The operation analysis was carried out using PSCAD/EMTDC software, in which the power circuit is implemented by built-in model and the controller is modelled by user-defined model that is also coded with C-language. Various simulation results confirm that the DC micro-grid can operate without any problem in both the interconnected mode and the islanded mode. The operation analysis result confirms that the DC micro-grid make it feasible to provide power to the load stably. And it can be utilize to develop the actual system design and building.

4족 보행 로봇의 장애물 회피와 축구하기 (Obstacle Avoidance and Playing Soccer in a Quadruped Walking Robot)

  • 서현세;성영휘
    • 대한임베디드공학회논문지
    • /
    • 제7권3호
    • /
    • pp.143-150
    • /
    • 2012
  • In this paper, we introduce an intelligent quadruped walking robot that can perform stable walking and a couple of intelligent behaviors. The developed robot has two sets of ultrasonic sensors and six sets of infrared sensors and can perform obstacle avoidance by detecting obstacles and estimating the distances and directions of those obstacles. The robot also has a stereo camera and can paly soccer by detecting a ball and estimating the 3 dimensional coordinates of the ball. In performing those intelligent behaviors, the robot needs to have the capability of generating its walking patterns, solving the inverse kinematics problem, and interfacing several sensors in realtime. Therefore we designed a hierarchical controller that consists of a main controller and an auxiliary controller. The main controller is a 32-bit DSP that can perform fast floating-point opertaion and the auxiliary one is a 8-bit micro-controller. We showed that the developed quadruped walking robot successfully perform those intelligent behaviors through experiments.

Design of a DSP-Based Adaptive Controller for Real Time Dynamic Control of AM1 Robot

  • S. H. Han;K. S. Yoon;Lee, M. H.;Kim, S. K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.100-104
    • /
    • 1998
  • This paper describes the real-time implementation of an adaptive controller fur the robotic manipulator. Digital signal processors(DSPs) are special purpose micro-processors that are particularly powerful for intensive numerical computations involving sums and products of variables. TMS320C50 chips are used in implementing real time adaptive control algorithms to provide an enhanced motion for robotic manipulators. In the proposed scheme, adaptation laws are derived from the improved Lyapunov second stability analysis based on the direct adaptive control theory. The adaptive controller consists of an adaptive feedforward controller and feedback controller. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a assembling robot.

  • PDF

Development of 3 D.O.F parallel robot's simulator for education

  • Yoo, Jae-Myung;Kim, John-Hyeong;Park, Dong-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2290-2295
    • /
    • 2005
  • In this paper, it is developed simulator system of 3 D.O.F parallel robot for educate of expertness. This simulator system is composed of three parts ? 3 D.O.F parallel robot, controller (hardware) and software. First, basic structure of the robot is 3 active rotary actuator that small geared step motor with fixed base. An input-link is connected to this actuator, and this input-link can connect two ball joints. Thus, two couplers can be connected to the input-link as a pair. An end-plate, which is jointed by a ball joint, can be connected to the opposite side of the coupler. A sub-link is produced and installed to the internal spring, and then this sub-link is connected to the upper and bottom side of the coupler in order to prevent a certain bending or deformation of the two couplers. The robot has the maximum diameter of 230 mm, 10 kg of weight (include the table), and maximum height of 300 mm. Hardware for control of the robot is composed of computer, micro controller, pulse generator, and motor driver. The PC used in the controller sends commands to the controller, and transform signals input by the user to the coordinate value of the robot by substituting it into equations of kinematics and inverse kinematics. A controller transfer the coordinate value calculated in the PC to a pulse generator by transforming it into signals. A pulse generator analyzes commands, which include the information received from the micro controller. A motor driver transfer the pulse received from the pulse generator to a step motor, and protects against the over-load of the motor Finally, software is a learning purposed control program, which presents the principle of a robot operation and actual implementation. The benefit of this program is that easy for a novice to use. Developed robot simulator system can be practically applied to understand the principle of parallel mechanism, motors, sensor, and various other parts.

  • PDF

FPGA Based Micro Step Motor Driver

  • Uk, Cho-Jung;Wook, Jeon-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.111.3-111
    • /
    • 2001
  • Automative system and robot are operated by motor. Recently, automative system and robot need correct operation and control for precise task. Therefore they need precise motor control technology. In present, controller needs precise motor control technology in automative system and robot. Usual step motor driver that has 200 steps per revolution is not proper. So we need micro step motor driver that is more precise then usual step motor driver. In this paper, micro step motor driver is used for precise control of step motor. The goal is precise operation and location control. This micro step motor driver is A3972SB that is made in Alloegro Company. It has serial port that receives two 6-bits linear DAC value. Almost all systems generate DAC value with micro processer and ...

  • PDF

연속류형 Micro-PCR 시스템의 설계 (Design of Continuous-flow Micro-PCR System)

  • 김덕종;김재윤;박상진;허필우;윤의수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.115-120
    • /
    • 2003
  • In this work, a continuous-flow micro-PCR system is systematically designed. From the numerical simulation based on the finite volume method, adapting oneself to a new environmental temperature without an external temperature controller is shown to be possible and a cooler as well as a heater is shown to be necessary to obtain three individual temperature zones for polymerase chain reaction. In addition, appropriate geometry of a heat sink for the cooler is determined by using a compact modeling method, the porous medium approach.

  • PDF