• Title/Summary/Keyword: Micro-code

Search Result 228, Processing Time 0.027 seconds

Gemas: Enhancing the Distribution of Integrated Eco-Friendly Marketing Strategies towards Digital Transformation and Global Competitiveness

  • Diana AQMALA;Febrianur Ibnu Fitroh Sukono PUTRA
    • Journal of Distribution Science
    • /
    • v.22 no.5
    • /
    • pp.39-57
    • /
    • 2024
  • Purpose: Various policies continue to be strengthened to develop Micro, Small and Medium Enterprises (MSMEs), which have a strategic role in the economy through the pillars of corporatization, capacity and financing to support strong and inclusive economic growth. Efforts to transform MSMEs marketing strategies are undertaken through eco-friendly digitalization to increase resilience and more productive and innovative capacity. Research design, data and methodology: This research is an exploratory qualitative approach taken to investigate the transformation of eco-friendly marketing strategies for MSMEs to increase competitiveness at the global level. The samples obtained were 425 MSMEs assisted by the DKI Jakarta, Bali, Java, Borneo, and Sumatera. The data collection technique used non-probability sampling (snowball sampling). Data is analyzed through collection, reduction, analysis, validity testing, presentation and conclusion. Results: This research shows the transformation of eco-friendly digital-based MSME marketing strategies occurred through four stages, namely production and institutional activities, expanding market share, digitalization and financing, and export market access. Conclusions: Eco-friendly digital transformation allows MSMEs competencies to be refined to improve business processes and business competitiveness at the international level. The contribution of this marketing strategy transformation is expanding MSMEs access to financial institutions (fintech), marketplaces, and QRIS (QR Code Indonesian Standard) digital payments.

Damage identification of masonry arch bridge under blast loading using smoothed particle hydrodynamics (SPH) method

  • Amin Bagherzadeh Azar;Ali Sari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.103-121
    • /
    • 2024
  • The smoothed particle hydrodynamics (SPH) method is a numerical technique used in dynamic analysis to simulate the fluid-like behavior of materials under extreme conditions, such as those encountered in explosions or high velocity impacts. In SPH, fluid or solid materials are discretized into particles. These particles interact with each other based on certain smoothing kernels, allowing the simulation of fluid flows and predict the response of solid materials to shock waves, like deformation, cracking or failure. One of the main advantages of SPH is its ability to simulate these phenomena without a fixed grid, making it particularly suitable for analyzing complex geometries. In this study, the structural damage to a masonry arch bridge subjected to blast loading was investigated. A high-fidelity micro-model was created and the explosives were modeled using the SPH approach. The Johnson-Holmquist II damage model and the Mohr-Coulomb material model were considered to evaluate the masonry and backfill properties. Consistent with the principles of the JH-II model, the authors developed a VUMAT code. The explosive charges (50 kg, 168 kg, 425 kg and 1000 kg) were placed in close proximity to the deck and pier of a bridge. The results showed that the 50 kg charges, which could have been placed near the pier by a terrorist, had only a limited effect on the piers. Instead, this charge caused a vertical displacement of the deck due to the confinement effect. Conversely, a 1000 kg TNT charge placed 100 cm above the deck caused significant damage to the bridge.

Adaptive energy group division in the few-group cross-section generation for full spectrum reactor modeling with deterministic method

  • Yichen Yang;Youqi Zheng;Xianan Du;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2019-2028
    • /
    • 2024
  • Advanced nuclear reactors, especially the newly developed small and micro-reactors have complex neutron spectrum, which makes the deterministic reactor core calculations sensitive to the energy group structure of few-group cross-sections. To avoid significantly increasing the cost of energy discretization in the core calculation, two energy group structures with 31 groups and 33 groups were adopted for typical thermal and fast reactor cores, respectively. Then, an adaptive scheme of group division for reactor cores with a medium neutron spectrum was proposed. The works were based on the full spectrum nuclear reactor analysis code SARAX/TULIP. An equivalent one-dimensional model of the core was proposed to capture the key neutron spectrum features of the reactor core. Such features were used to adaptively determine a few-group structure for the following reactor core calculations. Then, the neutron spectrum in different zones with more details was calculated. With this spectrum, the cross-sections were condensed into the determined energy groups. Three tests based on different neutron spectrum were calculated to verify the schemes. The results show that using the adaptive energy group division scheme, the following core calculation can meet the accuracy requirement of different reactors with different neutron spectra.

Impact of Community Health Care Resources on the Place of Death of Older Persons with Dementia in South Korea Using Public Administrative Big Data (공공 빅데이터를 이용한 치매 노인 사망장소의 결정요인: 지역보건의료자원의 영향)

  • Lim, Eunok;Kim, Hongsoo
    • Health Policy and Management
    • /
    • v.27 no.2
    • /
    • pp.167-176
    • /
    • 2017
  • Background: This study aimed to analyze the impact of community health care resources on the place of death of older adults with dementia compared to those with cancer in South Korea, using public administrative big data. Methods: Based on a literature review, we selected person- and community-level variables that can affect older people's decisions about where to die. Data on place-of-death and person-level attributes were obtained from the 2013 death certification micro data from Statistics Korea. Data on the population and economic and health care resources in the community where the older deceased resided were obtained from various open public administrative big data including databases on the local tax and resident population statistics, health care resources and infrastructure statistics, and long-term care (LTC) insurance statistics. Community-level data were linked to the death certificate micro data through the town (si-gun-gu) code of the residence of the deceased. Multi-level logistic regression models were used to simultaneously estimate the impacts of community as well as individual-level factors on the place of death. Results: In both the dementia (76.1%) and cancer (87.1%) decedent groups, most older people died in the hospital. Among the older deceased with dementia, hospital death was less likely to occur when the older person resided in a community with a higher supply of LTC facility beds, but hospital death was more likely to occur in communities with a higher supply of LTC hospital beds. Similarly, among the cancer group, the likelihood of a hospital death was significantly lower in communities with a higher supply of LTC facility beds, but was higher in communities with a higher supply of acute care hospital beds. As for individual-level factors, being female and having no spouse were associated with the likelihood of hospital death among older people with dementia. Conclusion: More than three in four older people with dementia die in the hospital, while home is reported to be the place of death preferred by Koreans. To decrease this gap, an increase in the supply of end-of-life (EOL) care at home and in community-based service settings is necessary. EOL care should also be incorporated as an essential part of LTC. Changes in the perception of EOL care by older people and their families are also critical in their decisions about the place of death, and should be supported by public education and other related non-medical, social approaches.

Hardware Implementation of DCT and CAVLC for H.264/AVC based on Co-design (병행설계를 이용한 H.264/AVC의 DCT 및 CAVLC 하드웨어 구현)

  • Wang, Duck-Sang;Seo, Seok-Yong;Ko, Hyung-Hwa
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.69-79
    • /
    • 2013
  • In this paper, DCT(Discrete Cosine Transform) and CAVLC(Context Adaptive Variable Length Coding) are co-designed as hardware IP with software operation of the other modules in H.264/AVC codec. In order to increase the operation speed, a new method using SHIFT table is proposed. As a result, enhancement of about 16(%) in the operation speed is obtained. Designed Hardware IPs are downloaded into Virtex-4 FX60 FPGA in the ML-410 development board and H.264/AVC encoding is performed with Microblaze CPU implemented in FPGA. Software modules are developed from JM13.2 to make C code. In order to verify the designed Hardware IPs, Modelsim program is used for functional simulation. As a result that all Hardware IPs and software modules are downloaded into the FPGA, improvement of processing speed about multiples of 16 in case of DCT hardware IP and multiples of 10 in case of CAVLC compared with software-only processing. Although this paper deals with co-design of H/W and S/W for H.264, it can be utilized for the other embedded system design.

Numerical Analysis of Grout Flow and Injection Pressure Affected by Joint Roughness and Aperture (절리 거칠기와 간극 변화에 따른 그라우트 유동과 주입압에 관한 수치해석적 연구)

  • Jeon, Ki-Hwan;Ryu, Dong-Woo;Kim, Hyung-Mok;Park, Eui-Seob;Song, Jae-Jun
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.82-91
    • /
    • 2010
  • Grouting technology is one of the ground improvement methods used in water controlling and reinforcement of rock mass in underground structure construction. It is necessarily required to find out the characteristics of grout flow through discontinuities in a rock mass for an adequate grout design and performance assessment. Laminar flow is not always applicable in simulating a grout flow in a rock mass, since the rock joints usually have apertures at a micro-scale and the flow through these joints is affected by the joint roughness and the velocity profile of the flow changes partially near the roughness. Thus, the influence of joint roughness and aperture on the grout flow in rough rock joint was numerically investigated in this study. The commercial computational fluid dynamics code, FLUENT, was applied for this purpose. The computed results by embedded Herschel-Bulkley model and VOF (volume of fluid) model, which are applicable to simulate grout flow in a narrow rock joint that is filled with air and water, were well compared with that of analytical results and previously published laboratory test for the verification. The injection pressure required to keep constant injection rate of grout was calculated in a variety of Joint Roughness Coefficient (JRC) and aperture conditions, and the effect of joint roughness and aperture on grout flow were quantified.

Analysis of grout injection distance in single rock joint (단일절리 암반에서 그라우팅 주입거리 분석)

  • Ji-Yeong Kim;Jo-Hyun Weon;Jong-Won Lee;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.541-554
    • /
    • 2023
  • The utilization of underground spaces in relation to tunnels and energy/waste storage is on the rise. To ensure the stability of underground spaces, it is crucial to reinforce rock fractures and discontinuities. Discontinuities, such as joints, can weaken the strength of the rock and lead to groundwater inflow into underground spaces. In order to enhance the strength and stability of the area around these discontinuities, rock grouting techniques are employed. However, during rock grouting, it is impossible to visually confirm whether the grouting material is being smoothly injected as intended. Without proper injection, the expected increases in strength, durability, and degree of consolidation may not be achieved. Therefore, it is necessary to predict in advance whether the grouting material is being injected as designed. In this study, we aimed to assess the injection performance based on injection variables such as the water/cement mixture ratio, injection pressure, and injection flow using UDEC (Universal Distinct Element Code) numerical program. Additionally, numerical results were validated by the lab experiment. The results of this study are expected to help optimize variables such as injection material properties, injection time, and pump pressure in the grouting design in the field.

Basic Study of Evaporative Characteristics of Emulsified Fuels (에멀젼연료 증발특성에 관한 기초 연구)

  • Yeom, Jeong Kuk;Yoon, Jeong Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.917-922
    • /
    • 2015
  • The goal of this study is to consider the application of alternative blended fuel to diesel engine. In this study, as the test fuels, we use a blended fuel mix of diesel and hydrogen peroxide. As the primary variable, we vary the mixing ratio of diesel and hydrogen peroxide in the experimental and numerical analysis. We perform an evaporative behavior characteristics analysis of the emulsified fuel using the Schlieren method. The numerical analysis was carried out based on results obtained from the experimental analysis using the commercial code(ANSYS CFX). Consequently, we found that the micro-explosion depends on the fraction of hydrogen peroxide, and we propose a numerical method for the quantitative evaporation analysis of emulsified fuel droplets using the calculation of the volume fraction in the oil domain.

Simultaneous and Multi-frequency Driving System of Ultrasonic Sensor Array for Object Recognition

  • Park, S.C.;Choi, B.J.;Lee, Y.J.;Lee, S.R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.582-587
    • /
    • 2004
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments, because they are cheap, easy to use, and robust under varying lighting conditions. However, the recognition of objects using a ultrasonic sensor is not so easy due to its characteristics such as narrow beam width and no reflected signal from a inclined object. As one of the alternatives to resolve these problems, use of multiple sensors has been studied. A sequential driving system needs a long measurement time and does not take advantage of multiple sensors. Simultaneous and pulse coding driving system of ultrasonic sensor array cannot measure short distance as the length of the code becomes long. This problem can be resolved by multi-frequency driving of ultrasonic sensors, which allows multi-sensors to be fired simultaneously and adjacent objects to be distinguished. Accordingly, this paper presents a simultaneous and multi-frequency driving system for an ultrasonic sensor array for object recognition. The proposed system is designed and implemented using a DSP and FPGA. A micro-controller board is made using a DSP, Polaroid 6500 ranging modules are modified for firing the multi-frequency signals, and a 5-channel frequency modulated signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances for each sensor were obtained from filtering of the received overlapping signals and calculation of the time-of-flights.

  • PDF

Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 2. Numerical analysis

  • Gawin, D.;Majorana, C.E.;Pesavento, F.;Schrelfer, B.A.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.203-214
    • /
    • 2005
  • In the Part 1 paper (Gawin, et al. 2005) some experimental results concerning micro-structural tests, permeability measurements and stress-strain tests of four types of High Performance Concrete, exposed to elevated temperatures (up to $700^{\circ}C$) are presented and discussed. On the basis of these experimental results parameters of the constitutive relationships describing influence of damage and temperature upon material intrinsic permeability at high temperature were determined. In this paper the effects of various formulations of damage-permeability coupling on results of computer simulations are analysed and compared with the results obtained by means of the previously proposed approach, that does not take into account the thermo-chemical concrete damage directly. Numerical solutions are obtained using the recently developed fully coupled model of hygro-thermal and damage phenomena in concrete at elevated temperatures. High temperature effects are considered by means of temperature and pressure dependence of several material parameters. Based on the mathematical model, the computer code HITECOSP was developed. Material parameters of the model were measured by several European laboratories, which participated in the "HITECO" research project. A model problem, concerning hygro-thermal behaviour and degradation of a HPC structure during fire, is solved. The influence of two different constitutive descriptions of the concrete permeability changes at high temperature, including thermo-chemical and mechanical damage effects, upon the results of computer simulations is analysed and discussed.