• Title/Summary/Keyword: Micro-channel chip

Search Result 74, Processing Time 0.029 seconds

Machinability in Micro-precision Machining of Ni-Plated Layer by Diamond Tool (다이어몬드 공구를 이용한 Ni 도금층의 정밀미세가공 시 절삭성)

  • Kim, Seon-Ah;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.636-641
    • /
    • 2009
  • Recently, expansion of micro-technology parts requires micro-precision machining technology. Micro-groove machining is important to fabricate micro-grating lens and many micro-parts such as microscope lens, fluidic graphite channel etc. Conventional groove fabrication methods such as etching and lithography have some problems in efficiency and surface integrity. But, mechanical micromachining methods using single crystal diamond tools can reduce these problems in chemical process. For this reason, microfabrication methods are expected to be very efficient, and widely studied. This study deals with machinability in micro-precision V-grooves machining of nickel plated layer using non-rotational single crystal diamond tool and 3-axis micro stages. Micro V-groove shape, chip formation and tool wear were investigated for the analysis of machinability of Ni plated layer.

  • PDF

Fabrication of 1-${\mu}m$ channel length OTFTs by microcontact printing

  • Shin, Hong-Sik;Baek, Kyu-Ha;Yun, Ho-Jin;Ham, Yong-Hyun;Park, Kun-Sik;Lee, Ga-Won;Lee, Hi-Deok;Wang, Jin-Suk;Lee, Ki-Jun;Do, Lee-Mi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1118-1121
    • /
    • 2009
  • We have fabricated inverted staggered pentacene Thin Film Transistor (TFT) with 1-${\mu}m$ channel length by micro contact printing (${\mu}$-CP) method. Patterning of micro-scale source/drain electrodes without etching was successfully achieved using silver nano particle ink, Polydimethylsiloxane (PDMS) stamp and FC-150 flip chip aligner-bonder. Sheet resistance of the printed Ag nano particle films were effectively reduced by two step annealing at $180^{\circ}C$.

  • PDF

Microbead-based bio-assay using quantum dot fluorescence in a microfluidic chip (미소유체 칩 상에서 Quantum Dot 및 마이크로 비드를 이용한 생체물질 분석)

  • Yun, Kwang-Seok;Lee, Do-Hoon;Kim, Hak-Sung;Yoon, Eui-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.308-312
    • /
    • 2005
  • We present a microfluidic chip designed for the detection of antibody by using quantum dots fluorescence and a microbead-based assay. A custom designed PDMS microfluidic chip with multi-layer channel is utilized for capturing microbeads; antibody injection into each micro-well; QD injection; and fluorescence detection. The experiment using the fabricated microfluidic chip has been performed on solutions with various concentrations of antibody and has shown correlated fluorescent intensities.

Effects of Packing Pressure and Time on Injection Molding of Plastic Micro-channel Plates (플라스틱 마이크로 채널 기판 사출성형 시 보압의 영향)

  • Woo, Sang-Won;Park, Si-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.224-229
    • /
    • 2016
  • Recently, polymeric micro-fluidic biochips with numerous micro patterns on the surface were fabricated by injection molding for realizing low-cost mass production of devices. To evaluate the effects of process parameters on large-scale micro-structure replication, a $50{\times}50mm^2$ tool insert with surface structures having a patterns of trapezoidal shapes (height: $30{\mu}m$) was employed. During injection molding, PMMA was used; packing phase parameters and mold temperature were investigated. The replicated surface textures were quantitatively characterized by confocal laser microscopy with 10-nm resolution. The degree of replication at low mold temperatures was found to be higher than that at high mold temperature at the beginning of the packing stage. Thereafter, the degree of replication increased to a greater extent at higher mold temperatures; application of higher mold temperatures improved the degree of replication.

A Continuous Electrical Cell Lysis Chip using a DC Bias Voltage for Cell Disruption and Electroosmotic Flow (한 쌍의 전극으로 전기 삼투 유동과 세포 분쇄 기능을 동시에 구현한 연속적인 세포 분쇄기)

  • Lee, Dong-Woo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.831-835
    • /
    • 2008
  • We present a continuous electrical cell lysis chip, using a DC bias voltage to generate the focused high electric field for cell lysis as well as the electroosmotic flow for cell transport. The previous cell lysis chips apply an AC voltage between micro-gap electrodes for cell lysis and use pumps or valves for cell transport. The present DC chip generates high electrical field by reducing the width of the channel between a DC electrode pair, while the previous AC chips reducing the gap between an AC electrode pair. The present chip performs continuous cell pumping without using additional flow source, while the previous chips need additional pumps or valves for the discontinuous cell loading and unloading in the lysis chambers. The experimental study features an orifice whose width and length is 20 times narrower and 175 times shorter than the width and length of a microchannel. With an operational voltage of 50 V, the present chip generates high electric field strength of 1.2 kV/cm at the orifice to disrupt cells with 100% lysis rate of Red Blood Cells and low electric field strength of 60 V/cm at the microchannel to generate an electroosmotic flow of $30{\mu}m/s{\pm}9{\mu}m/s$. In conclusion, the present chip is capable of continuous self-pumping cell lysis at a low voltage; thus, it is suitable for a sample pretreatment component of a micro total analysis system or lab-on-a-chip.

Fabrication and Simulation of Fluid Wing Structure for Microfluidic Blood Plasma Separation

  • Choe, Jeongun;Park, Jiyun;Lee, Jihye;Yeo, Jong-Souk
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.196-202
    • /
    • 2015
  • Human blood consists of 55% of plasma and 45% of blood cells such as white blood cell (WBC) and red blood cell (RBC). In plasma, there are many kinds of promising biomarkers, which can be used for the diagnosis of various diseases and biological analysis. For diagnostic tools such as a lab-on-a-chip (LOC), blood plasma separation is a fundamental step for accomplishing a high performance in the detection of a disease. Highly efficient separators can increase the sensitivity and selectivity of biosensors and reduce diagnostic time. In order to achieve a higher yield in blood plasma separation, we propose a novel fluid wing structure that is optimized by COMSOL simulations by varying the fluidic channel width and the angle of the bifurcation. The fluid wing structure is inspired by the inertial particle separator system in helicopters where sand particles are prevented from following the air flow to an engine. The structure is ameliorated in order to satisfy biological and fluidic requirements at the micro scale to achieve high plasma yield and separation efficiency. In this study, we fabricated the fluid wing structure for the efficient microfluidic blood plasma separation. The high plasma yield of 67% is achieved with a channel width of $20{\mu}m$ in the fabricated fluidic chip and the result was not affected by the angle of the bifurcation.

Fabrication of electro phoresis microchips and effects of channel surface properties (마이크로 전기영동 소자의 제작과 유로 면 특성에 따른 전기삼투 및 전기영동 효과)

  • Kim, Min-Su;Cho, Seung-Il;Lee, Kook-Nyung;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.286-289
    • /
    • 2003
  • We investigated the influence of the properties of substrate material on the separation efficiency in microchip electrophoresis. We fabricated the various microchips and studied separation efficiency in microchannels composed of a single material such as quartz, glass, polydimethylsiloxane (PDMS), and polymethylmetha crylate (PMMA), as well as hybrid micro channels composed of different materials. New fabrication process for glass chip was suggested and some treatment is added to improve fabrication process in other chip. Separation efficiency was compared by measuring migration times and bandwidths of EOF and analytes in each microchip. The efficiency is the function of migration time, which is affected by the electroosmotic flow (EOF), and bandwidth of an analyte. EOF is highly dependent upon the characteristics of a microchannel wall surface. Migration time was more reproducible in silica chips than that of PDMS chip and more band broadening was observed in the microchip composed of hybrid material due to non-uniformity of surface charge density at the walls of the channel.

  • PDF

MEMS Fabrication of Microchannel with Poly-Si Layer for Application to Microchip Electrophoresis (마이크로 칩 전기영동에 응용하기 위한 다결정 실리콘 층이 형성된 마이크로 채널의 MEMS 가공 제작)

  • Kim, Tae-Ha;Kim, Da-Young;Chun, Myung-Suk;Lee, Sang-Soon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.513-519
    • /
    • 2006
  • We developed two kinds of the microchip for application to electrophoresis based on both glass and quartz employing the MEMS fabrications. The poly-Si layer deposited onto the bonding interface apart from channel regions can play a role as the optical slit cutting off the stray light in order to concentrate the UV ray, from which it is possible to improve the signal-to-noise (S/N) ratio of the detection on a chip. In the glass chip, the deposited poly-Si layer had an important function of the etch mask and provided the bonding surface properly enabling the anodic bonding. The glass wafer including more impurities than quartz one results in the higher surface roughness of the channel wall, which affects subsequently on the microflow behavior of the sample solutions. In order to solve this problem, we prepared here the mixed etchant consisting HF and $NH_4F$ solutions, by which the surface roughness was reduced. Both the shape and the dimension of each channel were observed, and the electroosmotic flow velocities were measured as 0.5 mm/s for quartz and 0.36 mm/s for glass channel by implementing the microchip electrophoresis. Applying the optical slit with poly-Si layer provides that the S/N ratio of the peak is increased as ca. 2 times for quartz chip and ca. 3 times for glass chip. The maximum UV absorbance is also enhanced with ca. 1.6 and 1.7 times, respectively.

Development of New Biochip and Genome Detection Using an Non-labeling Target DNA (차세대형 바이오칩의 개발 및 비수식화 표적 DNA를 이용한 유전자 검출)

  • Choi, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo;Kawai, Tomoji
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.51-53
    • /
    • 2002
  • This research aims to develop a multiple channel electrochemical DNA chip using micro-fabrication technology. At first, we fabricated a high integrated type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the sold electrodes. Then target DNAs were hybridized by an electrical force. Redox peak of cyclic-voltammogram showed a difference between target DNA and mismatched DNA in the anodic peak current. Therefore, it is able to detect a various genes electrochemically after immobilization of a various probe DNA and hybridization of label-free DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF