• 제목/요약/키워드: Micro-channel Flow

검색결과 221건 처리시간 0.022초

미소채널내의 Langmuir 미끄럼 경계조건을 통한 미끄럼 속도 및 급격한 온도변화에 관한 수치해석 (Numerical Analysis of the Slip Velocity and Temperature-Jump in Microchannel Using Langmuir Slip Boundary Condition)

  • 김상우;김현구;이도형
    • 대한기계학회논문집B
    • /
    • 제33권3호
    • /
    • pp.164-169
    • /
    • 2009
  • The slip velocity and the temperature jumps for low-speed flow in microchannels are investigated using Langmuir slip boundary condition. This slip boundary condition is suggested to simulate micro flow. The current study analyzes Langmuir slip boundary condition theoretically and it analyzed numerically micro-Couette flow, micro-Poiseuille flow and grooved microchannel flow. First, to prove validity for Langmuir slip condition, an analytical solution for micro-Couette flow is derived from Navier-Stokes equations with Langmuir slip conditions and is compared with DSMC and an analytical solution with Maxwell slip boundary condition. Second, the numerical analysis is performed for micro-Poiseuille flow and grooved microchannel flow. The slip velocity and temperature distribution are compared with results of DSMC or Maxwell slip condition and those are shown in good agreement.

격자 볼츠만 방법을 이용한 미소채널 내에서의 층류 유동에 대한 표면 거칠기의 영향 (Effect of surface roughness on laminar flow in a micro-channel by using lattice Boltzmann method)

  • 신명섭;윤준용;변성준;김각중
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.179-183
    • /
    • 2006
  • Surface roughness is present in most of the microfluidic devices due to the microfabrication techniques. This paper presents lattice Boltzmann method (LBM) results for laminar flow in a microchannel with surface roughness. The surface roughness is modeled by an array of rectangular modules placed on top and bottom side of a parallel-plate channel. In this study, LBGK D2Q9 code in lattice Boltzmann Method is used to simulate flow field for low Reynolds number in a micro-channel. The effects of relative surface roughness, roughness distribution, roughness size and the results are presented in the form of the product of friction factor and Reynolds number. Finally, a significant increase in Poiseuille number is detected as the surface roughness is considered, while the effect of roughness on the microflow field depends on the surface roughness.

  • PDF

전기 삼투를 이용한 미세 유체 소자에서의 유량 제어 기술 개발 (Development of electroosmotic flow control technique in micro fluidic devices)

  • 최은수;정대중;심원철;양상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1991-1993
    • /
    • 2002
  • This paper presents the PDMS surface characteristic change after the plasma process and the electroosmotic flow control technique for the two-dimensional focusing in the micro channels made of PDMS and glass. The channels are fabricated by plastic molding and micromachining technique. To observe the surface characteristic change as time elapses, we measure the contact angle of water on the surface and the velocity of the electroosmotic flow in a channel. The electric field adequate for focusing of a core flow in a confluence channel is obtained by the experiment. The computer simulation is performed to obtain the width and the depth of the core flow for several junction angles of the confluence channel.

  • PDF

Movement and evolution of macromolecules in a grooved micro-channel

  • Zhou, L.W.;Liu, M.B.;Chang, J.Z.
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.157-172
    • /
    • 2013
  • This paper presented an investigation of macromolecular suspension in a grooved channel by using the dissipative particle dynamics (DPD) with finitely extensible non-linear elastic (FENE) bead spring chains model. Before studying the movement and evolution of macromolecules, the DPD method was first validated by modeling the simple fluid flow in the grooved channel. For both simple fluid flow and macromolecular suspension, the flow fields were analyzed in detail. It is found that the structure of the grooved channel with sudden contraction and expansion strongly affects the velocity distribution. As the width of the channel reduces, the horizontal velocity increases simultaneously. Vortices can also be found at the top and bottom corners behind the contraction section. For macromolecular suspension, the macromolecular chains influence velocity and density distribution rather than the temperature and pressure. Macromolecules tend to drag simple fluid particles, reducing the velocity with density and velocity fluctuations. Particle trajectories and evolution of macromolecular conformation were investigated. The structure of the grooved channel with sudden contraction and expansion significantly influence the evolution of macromolecular conformation, while macromolecules display adaptivity to adjust their own conformation and angle to suit the structure so as to pass the channel smoothly.

미소 채널의 형상변화에 의한 혼합효율에 관한 수치 해석적 연구 (Numerical Analysis on Mixing Efficiency in a Micro-channel with Varied Geometry)

  • 윤준용;한규석;변성준
    • 공업화학
    • /
    • 제16권2호
    • /
    • pp.275-281
    • /
    • 2005
  • 본 연구에서는 격자 볼츠만 방법 중 Scalar Passive 코드를 사용하여 미소채널 내에서의 수동형 믹서의 혼합에 대하여 계산을 수행하였다. 미소채널 내에서의 수동형 믹서의 혼합에 대하여 유선과 압력분포를 통해 혼합과 압력 강하를 물리적으로 규명하였으며, 혼합에 영향을 주는 인자에 대해서 알아보았다. 수동형 믹서의 경우 고정물의 간격보다는 고정물의 개수와 고정물의 크기가 혼합효율과 압력강하에 큰 영향을 주었다.

Micro-PIV를 이용한 마이크로 튜브/채널 내에서의 혈장유동측정 (Measurements of Plasma Flows in Micro-Tube/Channel Using Micro-PIV)

  • 고춘식;윤상열;지호성;김경천
    • 대한기계학회논문집B
    • /
    • 제28권5호
    • /
    • pp.587-593
    • /
    • 2004
  • In this paper, flow characteristics of plasma flow in a micro-tube were investigated experimentally using micro particle image velocimetry(micro-PIV). For comparison, the experiments were repeated for deionized(DI) wale. instead of plasma. Both velocity profiles of plasma and do-ionized water are well agreed with the theoretical velocity distribution of newtonian fluid. We also carried out generating plasma-in-oil droplet formation at a Y-junction microchannel. In order to clarify the hydrodynamic aspects involved in plasma droplet formation, Rhodamine-B were mixed with plasma only for visualization of plasma droplet. With oil as the continuous phase and plasma as the dispersed phase, plasma droplet can be generated in a continuous phase flow at a Y-junction. For given experimental parameters, regular-sized droplets are reproducibly formed at a uniform flow conditions.

Slip flow 영역에서 Navier Stokes 방정식의 해석 연구 (Solutions of the Navier-Stokes equation in slip flow region)

  • 박원희;김태국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.597-602
    • /
    • 2000
  • In a MEMS(micro-electro mechanical system), the fluid may slip near the surface of a solid and have a discontinuous temperature profile. A numerical prediction in this slip flow region can provide a reasonable guide for the design and fabrication of micro devices. The compressible Navier-Stokes equation with Maxwell/smoluchowski boundary condition is solved for two simple systems; couette flow and pressure driven flow in a long channel. We found that the couette flow could be regarded as an incompressible system in low speed regions. For the pressure driven flow system, we observed nonlinear distribution of pressure in the long channel and numerical results showed a good agreement with the experimental results.

  • PDF

마이크로채널에서 과냉 핵비등 시발점의 비정상 수치해석 (TRANSIENT SIMULATION OF SUBCOOLED ONSET OF NUCLEATE BOILING IN A MICRO-CHANNEL)

  • 이희준
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.88-93
    • /
    • 2011
  • A numerical study of subcooled onset of nucleate boiling (ONB) in a micro-channel under pulsed heating using volume of fluids (VOF) model was conducted. The VOF simulation adopting the existing experimental condition is compared to the experimental data. The time to ONB was determined when the void fraction at the microheater surface first appeared. The theoretical superheat for homogeneous nucleation relatively predicts the transient ONB results of convective flow of water well based on local temperature distribution. It was found that once heat load increases at the heater, transient flow boiling starts to occur faster.

Flow regime transition criteria for vertical downward two-phase flow in rectangular channel

  • Chalgeri, Vikrant Siddharudh;Jeong, Ji Hwan
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.546-553
    • /
    • 2022
  • Narrow rectangular channels are employed in nuclear research reactors that use plate-type nuclear fuels, high heat-flux compact heat exchangers, and high-performance micro-electronics cooling systems. Two-phase flow in narrow rectangular channels is important, and it needs to be better understood because it is considerably different than that in round tubes. In this study, mechanistic models were developed for the flow regime transition criteria for various flow regimes in co-current air-water two-phase flow for vertical downward flow inside a narrow rectangular channel. The newly developed criteria were compared to a flow regime map of downward air-water two-phase flow inside a narrow rectangular channel with a 2.35-mm gap width under ambient temperature and pressure conditions. Overall, the proposed model showed good agreement with the experimental data.

Y형 마이크로채널에서의 물/기름 2상 유동에 대한 Micro-PIV 측정 (Micro-PIV Measurement of Water/Oil Two Phase Flow in a Y-Junction Microchannel)

  • 윤상열;고춘식;김경천
    • 대한기계학회논문집B
    • /
    • 제28권6호
    • /
    • pp.682-687
    • /
    • 2004
  • Y-junction microchannels are widely used as a flew mixer. Fluids are entered from two branch channels and merged together at a combined channel. In this study, we suggest a simple method to create the fluid digitization using flow instability phenomena. Two immiscible liquids (water/oil) are infused continuously to each Y-junction inlets. Because of the differences in fluid and flow properties at the interface, oil droplet is formed automatically followed by flow instability. In order to clarify the hydrodynamic aspects involved in oil droplet formation, a quantitative flow visualization study has performed. Highly resolved velocity vector fields are obtained by a micro-PIV technique, so that detail flow structures around the droplet are illustrated. In this study, fluorescent particles were mixed with water only for visualization of oil droplet and velocity field measurement in water flow.