• Title/Summary/Keyword: Micro-cells

Search Result 836, Processing Time 0.031 seconds

Stand-Alone Type Single-Phase Fuel Cells Micro-Source with ac Voltage Compensation Capability (교류전압 보상 기능을 갖는 독립형 단상 연료전지 마이크로 소스)

  • Jung, Young-Gook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • This paper proposes a stand alone type single-phase fuel cells micro-source with a voltage sag compensator for compensating the ac output voltage variations (sag or swell) of micro-source. The proposed micro-source is consist of a PEM(polymer electrolyte membrane) fuel cells simulator, a full bridge de converter, a 60Hz PWM(pulse width modulation) VSI(voltage source inverter), and a voltage sag compensator. Voltage sag compensator is similar to the configuration of hybrid series active power filter, and it is directly connected to micro-source through the injection transformer. Compensation algorithm of a voltage sag compensator adopts a single phase p-q theory. Effectiveness of the proposed the system is verified by the PSIM(power electronics simulation tool) simulation in the steady state and transient state which the proposed system is able to simultaneously compensate the harmonic current and source voltage sag or swell.

The Effects of an RF Plasma and Electric Fields on the Death of G361 Melanoma Cells (RF 플라즈마 및 전기장의 흑색종 (G361 melanoma) 세포에 대한 사멸 효과)

  • Shon, Chae-Hwa;Kim, Gyoo-Cheon;Lee, Hae-June
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1972-1977
    • /
    • 2007
  • Micro plasma has been recently studied to investigate the effects on various cells. We study a micro-plasma produced by a plasma needle that is operated with RF power and its effects on G361 melanoma cells. The micro plasma size ranges from sub-mm to several mm at a few watts of RF power. For the bio-medical treatment, low-temperature plasma is obtained and gas temperature is controlled within several tens of degrees $(^{\circ}C)$ in order not to disturb cell activities. Elementary spectroscopic studies to obtain plasma characteristics are presented for Ar and He plasma with different frequencies of RF power. Also the preliminary results of the micro plasma effects on G361 melanoma cells are presented. It was observed that the irradiation of micro plasma induces cell death through the deprivation of tyrosine phosphorylation in the G361 cells.

Exosome-derived microRNA-29c Induces Apoptosis of BIU-87 Cells by Down Regulating BCL-2 and MCL-1

  • Xu, Xiang-Dong;Wu, Xiao-Hou;Fan, Yan-Ru;Tan, Bing;Quan, Zhen;Luo, Chun-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3471-3476
    • /
    • 2014
  • Background: Aberrant expression of the microRNA-29 family is associated with tumorigenesis and cancer progression. As transport carriers, tumor-derived exosomes are released into the extracellular space and regulate multiple functions of target cells. Thus, we assessed the possibility that exosomes could transport microRNA-29c as a carrier and correlations between microRNA-29c and apoptosis of bladder cancer cells. Materials and Methods: A total of 28 cancer and adjacent tissues were examined by immunohistochemistry to detect BCL-2 and MCL-1 expression. Disease was Ta-T1 in 12 patients, T2-T4 in 16, grade 1 in 8, 2 in 8 and 3 in 12. The expression of microRNA-29c in cancer tissues was detected by quantitative reverse transcriptase PCR (QRT-PCR). An adenovirus containing microRNA-29c was used to infect the BIU-87 human bladder cancer cell line. MicroRNA-29c in exosomes was measured by QRT-PCR. After BIU-87 cells were induced by exosomes-derived microRNA-29c, QRT-PCR was used to detect the level of microRNA-29c. Apoptosis was examined by flow cytometry and BCL-2 and MCL-1 mRNA expressions were assessed by reverse transcription-polymerase chain reaction. Western blotting was used to determine the protein expression of BCL-2 and MCL-1. Results: The expressions of BCL-2 and MCL-1 protein were remarkably increased in bladder carcinoma (p<0.05), but was found mainly in the basal and suprabasal layers in adjacent tissues. The expression of microRNA-29c in cancer tissues was negatively correlated with the BCL-2 and MCL-1. The expression level of microRNA-29c in exosomes and BIU-87 cells from the experiment group was higher than that in control groups (p<0.05). Exosome-derived microRNA-29c induced apoptosis (p<0.01). Although only BCL-2 was reduced at the mRNA level, both BCL-2 and MCL-1 were reduced at the protein level. Conclusions: Human bladder cancer cells infected by microRNA-29c adenovirus can transport microRNA-29c via exosomes. Moreover, exosome-derived microRNA29c induces apoptosis in bladder cancer cells by down-regulating BCL-2 and MCL-1.

MicroRNA-146a Enhances Helicobacter pylori Induced Cell Apoptosis in Human Gastric Cancer Epithelial Cells

  • Wu, Kai;Yang, Liu;Li, Cong;Zhu, Chao-Hui;Wang, Xin;Yao, Yi;Jia, Yu-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5583-5586
    • /
    • 2014
  • Helicobacter pylori (H. pylori) infection induces apoptosis in gastric epithelial cells, and this occurrence may link to gastric carcinogenesis. However, the regulatory mechanism of H. pylori-induced apoptosis is not clear. MicroRNA-146a has been implicated as a key regulator of the immune system. This report describes our discovery of molecular mechanisms of microRNA-146a regulation of apoptosis in human gastric cancer cells. We found that overexpression of microRNA-146a by transfecting microRNA-146a mimics could significantly enhance apoptosis, and this upregulation was triggered by COX-2 inhibition. Furthermore, we found that microRNA-146a density was positively correlated with apoptosis rates in H. pylori-positive gastric cancer tissues and intratumoral microRNA-146a density was negatively correlated with lymph node metastasis among H. pylori-positive gastric cancer patients. Understanding the important roles of microRNA-146a in regulating cell apoptosis in H. pylori infected human gastric cancer cells will contribute to the development of microRNA targeted therapy in the future.

Research on the Apoptotic Death of Melanoma by the irradiation of Micro Plasma (마이크로 플라즈마를 이용한 피부암 세포의 자연사 유도 연구)

  • Shon, C.H.;Kim, G.C.;Lee, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.220-221
    • /
    • 2007
  • Micro plasma has been recently studied to investigate the effects on various cells. We study a micro-plasma produced by a plasma needle that is operated with RF power and its effects on G361 melanoma cells. The micro plasma size ranges from sub-mm to several mm at a few watts of RF power. For the bio-medical treatment, low-temperature plasma is obtained and gas temperature is controlled within several tens of degrees $(^{\circ}C)$ in order not to disturb cell activities. Elementary spectroscopic studies to obtain plasma characteristics are presented for Ar and He plasma with different frequencies of RF power. Also the preliminary results of the micro plasma effects on G361 melanoma cells are presented. It was observed that the irradiation of micro plasma induces cell death through the deprivation of tyrosine phosphorylation in the G361 cells.

  • PDF

A Study on the Optimum Design for LTCC Micro-Reformer: (Performance Evaluation of Various Flow Channel Structures ('LTCC를 소재로 하는 마이크로 리포머의 최적 설계에 관한 연구: (다양한 채널구조에 따른 성능변화 고찰)')

  • Chung Chan-Hwa;Oh Jeong-Hoon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.551-552
    • /
    • 2006
  • The miniature fuel cells have emerged as a promising power source for applications such as cellular phones, small digital devices, and autonomous sensors to embedded monitors or to micro-electro mechanical system (MEMS) devices. Several chemicals run candidate at a fuel in those systems, such as hydrogen. methanol, ethanol, acetic acid, and di-methyl ether (DME). Among them, hydrogen shows most efficient fuel performance. However, there are some difficulties in practical application for portable power sources. Therefore, more recently, there have been many efforts for development of micro-reformer to operate highly efficient micro fuel cells with liquid fuels such as methanol, ethanol, and DME In our experiments, we have integrated a micro-fuel processor system using low temperature co-fired ceramics (LTCC) materials. Our integrated micro-fuel processor system is containing embedded heaters, cavities, and 3D structures of micro- channels within LTCC layers for embedding catalysts (cf. Figs. 1 and 2). In the micro-channels of LTCC, we have loaded $CuO/ZnO/Al_2O_3$ catalysts using several different coating methods such as powder packing or spraying, dipping, and washing of catalyst slurry.

  • PDF

Fabrication and Characteristics of In-Plane Type Micro Piezoelectric Micro Grippers with Pneumatic Lines for Biological Cells and Micro Parts Handling (바이오 셀 및 마이크로 부품 handling을 위한 pneumatic line을 갖는 in-plane 형 마이크로 압전 그리퍼 제조 및 특성)

  • Park J.S.;Park K.B.;Shin K.S;Moon C.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.501-502
    • /
    • 2006
  • In-plane type micro piezoelectric micro grippers with pneumatic lines for manipulation biological cells and micro parts were designed, fabricated, and characterized. Micro grippers were fabricated through the final micro-sanding process after wafer level bonding between the etched 4' Si wafer with pneumatic channels and 4' glass wafer. Displacements between two jaws of fabricated micro grippers were linearly increased with applying voltages to piezoelectric actuator. In the case of applying 80 V, the displacement between two jaws was $160{\mu}m$. Using fabricated micro grippers, manipulation tests for biological cell and micro parts with the sizes less than $100{\mu}m$ are in process.

  • PDF

Micro-bioreactor for Physical stimulation of endothelial cells using micro-bead impact by gravitational force (미세입자의 중력을 이용한 세포 자극기 개발에 관한 연구)

  • Kim, Young-Hun;Kim, Tae-Jin;Jung, Hyo-Il
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1690-1691
    • /
    • 2008
  • Micro cell stimulation device is interested in many researchers because it has several advantages such as saving time and reagents. We introduce new micro-bioreactor using micro bead and conduct cell stimulation experiments to verify effective time because cell have operated by cell-cycle (G1, S, G2, and M phase). Micro-bioreactor was made by soft lithography and CAPE (calf pulmonary artery endothelial cell) was cultured in PDMS (polydimethylsiloxane) micro device for 12 hour and cell starvation process was performed for 24 hours. Micro glass beads were rolled only by slating device every hour during 15 hour because of minimizing other stimulation force like flow and pressure. The result represents that cells under exposed under micro bead stimulation show higher growth rate than normal condition and earlier and later stimulation time are more effective.

  • PDF

Toxicity of Two Different Sized Lanthanum Oxides in Cultured Cells and Sprague-Dawley Rats

  • Lim, Cheol-Hong
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.181-189
    • /
    • 2015
  • In recent years, the use of both nano- and micro-sized lanthanum has been increasing in the production of optical glasses, batteries, alloys, etc. However, a hazard assessment has not been performed to determine the degree of toxicity of lanthanum. Therefore, the purpose of this study was to identify the toxicity of both nano- and micro-sized lanthanum oxide in cultured cells and rats. After identifying the size and the morphology of lanthanum oxides, the toxicity of two different sized lanthanum oxides was compared in cultured RAW264.7 cells and A549 cells. The toxicity of the lanthanum oxides was also analyzed using rats. The half maximal inhibitory concentrations of micro-$La_2O_3$ in the RAW264.7 cells, with and without sonication, were 17.3 and 12.7 times higher than those of nano-$La_2O_3$, respectively. Similar to the RAW264.7 cells, the toxicity of nano-$La_2O_3$ was stronger than that of micro-$La_2O_3$ in the A549 cells. We found that nano-$La_2O_3$ was absorbed in the lungs more and was eliminated more slowly than micro-$La_2O_3$. At a dosage that did not affect the body weight, numbers of leukocytes, and concentrations of lactate dehydrogenase and albumin in the bronchoalveolar lavage (BAL) fluids, the weight of the lungs increased. Inflammatory effects on BAL decreased over time, but lung weight increased and the proteinosis of the lung became severe over time. The effects of particle size on the toxicity of lanthanum oxides in rats were less than in the cultured cells. In conclusion, smaller lanthanum oxides were more toxic in the cultured cells, and sonication decreased their size and increased their toxicity. The smaller-sized lanthanum was absorbed more into the lungs and caused more toxicity in the lungs. The histopathological symptoms caused by lanthanum oxide in the lungs did not go away and continued to worsen until 13 weeks after the initial exposure.

Reverse link analysis of CDMA cellular systems with mixed cell sizes (혼합된 셀 크기를 갖는 CDMA 셀룰라 시스템에서 역방향 링크 용량 분석)

  • 전형구;신성문;권수근;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4A
    • /
    • pp.481-488
    • /
    • 2000
  • The demands for mobile communication service are growing rapidly. In heavily populated areas, cell split is unavoidable to increase the capacity of the cellular system. Cell splitting makes a cellular system to have mixed cell sizes. For cell planning, it is necessary to analyze the reverse link capacity of a CDMA cellular system with mixed cell sizes. In this paper, we propose a method to calculate the reverse link capacity of a CDMA cellular system with mixed cell sizes. When a macro cell is split into three micro cells, as an example, we calculate the reverse link capacities for the three micro cells and the neighboring macro cells. The results show that as the radius of a micro cell decreases, the reverse link capacity of the micro cell increases, while those of the neighboring macro cells decrease.

  • PDF