• Title/Summary/Keyword: Micro-bolt

Search Result 14, Processing Time 0.028 seconds

Effect of Micro-bolt Reinforcement for Composite Scarf Joint (복합재 스카프 조인트에서의 마이크로 볼트 보강에 대한 타당성 연구)

  • Lee, Gwang-Eun;Sung, Jung-Won;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • The reinforcement effect of micro-bolt for a bonded scarf joint was investigated. Three scarf ratios of 1/10, 1/20, and 1/30 were considered to examine the effect of scarf patch configuration on joint strength. To maintain the same density of micro-bolt, 16, 32, and 48 bolts were installed in the scarf joint specimens with scarf ratios of 1/10, 1/20, and 1/30, respectively. Tests were also carried out on the joints that are bonded with only adhesive and that are fastened with only micro-bolts to obtain reference values. The average failure loads of the adhesive joints with scarf ratios of 1/10, 1/20, and 1/30 were 29.7, 39.6, and 44.8 kN, respectively. In case of micro-bolt reinforcement, the failure loads at the same scarf ratios were 28.4, 37.2, and 40.1 kN, respectively, which corresponds to 96, 94, and 90% of the pure adhesive joint failure loads. In the case of using only micro-bolts, the failure loads were only 13-25% of the average failure loads of pure adhesive joints. Fatigue test was also conducted for the joints with scarf ratio of 1/10. The results show that the fatigue strength of hybrid joints using both adhesive and microbolts together slightly increased compared to the fatigue strength of adhesive joint, but the rate of increase was small to 2-3%. Through this study, it was confirmed that the reinforcement effect of micro-bolt is negligible in the scarf joints where shear stress is dominating the failure, unlike in the structure where peel stress is dominant.

Modeling and optimization of infill material properties of post-installed steel anchor bolt embedded in concrete subjected to impact loading

  • Saleem, Muhammad
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.445-455
    • /
    • 2022
  • Steel anchor bolts are installed in concrete using a variety of methods. One of the most common methods of anchor bolt installation is using epoxy resin as an infill material injected into the drilled hole to act as a bonding material between the steel bolt and the surrounding concrete. Typical design standards assume uniform stress distribution along the length of the anchor bolt accompanied with single crack leading to pull-out failure. Experimental evidence has shown that the steel anchor bolts fail owing to the multiple failure patterns, hence these design assumptions are not realistic. In this regard, the presented research work details the analytical model that takes into consideration multiple micro cracks in the infill material induced via impact loading. The impact loading from the Schmidt hammer is used to evaluate the bond condition bond condition of anchor bolt and the epoxy material. The added advantage of the presented analytical model is that it is able to take into account the various type of end conditions of the anchor bolts such as bent or U-shaped anchors. Through sensitivity analysis the optimum stiffness and shear strength properties of the epoxy infill material is achieved, which have shown to achieve lower displacement coupled with reduced damage to the surrounding concrete. The accuracy of the presented model is confirmed by comparing the simulated deformational responses with the experimental evidence. From the comparison it was found that the model was successful in simulating the experimental results. The proposed model can be adopted by professionals interested in predicting and controlling the deformational response of anchor bolts.

Effect of Ultrasonic Vibration on Micro-EDM Channel (Micro-EDM 채널가공에서 초음파 가진의 영향)

  • Lim, Heesung;Hong, Minsung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.421-425
    • /
    • 2016
  • Micro-EDM is one of the recent fine-machining technologies. Micro-EDM is widely used in precision processes because products manufactured via EDM are free from workpiece hardness. However, the debris produced during the process cause many problems such as reduced precision of the process. The first solution of this problem involves using the milling hole process. Micro-EDM hole process involves an electrode moving rapidly in the vertical direction via a servo system to disperse debris. However, this process can cause reduced work efficiency owing to contact between the electrode and workpiece. In this study, ultrasonic vibration is added to micro-EDM channel machining. Ultrasonic vibration removes the debris during machining and enables precision machining. Consequently, a clean work environment for the subsequent processes is maintained.

Mechanical properties and workability of micro-alloyed steel on cold forming of high tension bolt (고장력볼트 냉간압조용 비조질강 특성에 관한 연구)

  • Lee, Y.S.;Choi, J.M.;Hwang, B.K.;Chung, T.W.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.132-136
    • /
    • 2009
  • The importance and interests for saving of energy and cost in industry has been steadily grown up. Therefore, process optimization to reduce the processing step and energy is one of the most important things. The micro-alloyed steel of which post-heat-treatment is not necessary, has attractive points for high strength materials. However, for the application of non-heat-treated steel to structural parts, it is necessary to confirm the reliability of mechanical properties. In order to estimate mechanical properties. The microstructure, hardness, tensile strength, compressive strength and tensile fatigue strength of micro-alloyed steel having 900MPa tensile strength has been investigated.

  • PDF

Effect of Scale-down of Structure on Dynamic Characteristic Parameters in Bolted-Joint Beams (구조물의 소형화가 볼트 결합부의 동특성 파라미터에 미치는 영향 분석)

  • Kim, Bong-Suk;Lee, Seong-Min;Song, Jun-Yeob;Lee, Chang-Woo;Lee, Soo-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.108-116
    • /
    • 2007
  • To overcome many defects such as the high product cost, large energy consumption, and big space capacity in conventional mechanical machining, the miniaturization of machine tool and micro factory systems has been envisioned recently. The object of this paper is to research the effect of dynamic characteristic parameters in bolted-joint beams, which is widely applied to the joining of mechanical structures in order to identify structural system characteristics and to predict dynamic behavior according to scale-down from macro to micro system as the development of micro/meso-scale machine tool and micro factories. Modal parameters such as the natural frequency, damping ratio, and mode shape from modal testing and dynamic characteristics from finite element analysis are extracted with all 12 test beam models by materials, by size, and by joining condition, and then the results obtained by both methods are compared.

Experimental Study the on Hysteretic Characteristics of Rotational Friction Energy Dissipative Devices (회전 마찰형 제진장치의 이력특성에 대한 실험적 연구)

  • Park, Jin-Young;Han, Sang Whan;Moon, Ki-Hoon;Lee, Kang Seok;Kim, Hyung-Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.227-235
    • /
    • 2013
  • Friction energy dissipative devices have been increasingly implemented as structural seismic damage protecting systems due to their excellent seismic energy dissipating capacity and high stiffness. This study develops rotational friction energy dissipative devices and verifies experimentally their cyclic response. Based on the understanding of the differences between the traditional linear-motion friction behavior and the rotational friction behavior, the configuration of the frictional surface was determined by investigating the characteristics of the micro-friction behavior. The friction surface suggested in this paper consists of brake-lining pads and stainless steel sheets and is normally stressed by high-strength bolts. Based upon these frictional characteristics of the selected interface, the rotational friction energy dissipative devices were developed. Bolt torque-bearing force tests, rotational friction tests of the suggested friction interfaces were carried out to identify their frictional behavior. Test results show that the bearing force is almost linearly proportional to the applied bolt torque and presents stable cyclic response regardless of the experimental parameters selected this testing program. Finally, cyclic tests of the rotational friction energy dissipative devices were performed to find out their structural characteristics and to confirm their stable cyclic response. The developed friction energy dissipative devices present very stable cyclic response and meet the requirements for displacement-dependent energy dissipative devices prescribed in ASCE/SEI 7-10.

Effects of the Tagging methods on the Growth and Survival of Abalone Juvenile, Haliotis discus hannai (전복, Haliotis discus hannai 치패의 성장과 생존에 미치는 표지의 영향)

  • Kim Bong Seok;Lee Yun Ho;Park Doo Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.282-288
    • /
    • 2002
  • This study was carried out to investigate the optimum tagging method of the abalone juvenile, Haliotis discus hannai in indoor culture system from May 2000 to January2001. Tagging methods were shell drilling, copper-wire tagging at the respiratory pore and nut gluing on the shell. The attachment rates of the shell showed high in the 2- and 3 cm bolt-nut tagged groups, about over $89.5\%$, whereas shell drilling groups on the shell were about $18.5\%$. The internal coating rates tagged with bolt-nut were over $96.6\%$, while those tagged with copper wire were less than $17.1\%$. Growths in the all marked and tagged experimental groups comparing with control groups were not significantly different (p>0,05). Survivals in all tagging groups except shell drilling and nut gluing groups in the 5 cm abalone were over $95\%, Accordingly, all juvenile groups were not affected by the tagging methods in terms of the growth and survival on the abalones. Based on these results, the micro bolt-nut tagging was the most effective method in abalone.

Design and Experimental Results for Cooling Tubes of Ultrasonic Bonding Equipment of Ultrasonic Bonding Equipment (초음파 접합 장치의 냉각관 설계 및 접합강도 실험)

  • Lee, DongWook;Jeon, EuySick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1879-1884
    • /
    • 2014
  • Recently, the micro bonding technology comes into the spotlight as the miniaturization of the electronic product. The micro bonding technique can classify by way of laser welding and ultrasonic bonding and etc. However, the research on the micro bonding is much lacks. In this paper, carried out the cooling analysis of the 60 [kHz] ultrasonic bonding equipment to know heat effect of the piezoelectric element when the ultrasonic bonding equipment was operated. The ultrasonic horn having the natural frequency with 60 [kHz] for the dissimilar material bonding of the glass and solder tried to be designed. The parameters and response was set through the basic experiment. The dissimilar material bonding strength analysis using the 60 [kHz] ultrasonic bonding equipment was done. We carried out the bonding for improving bonding strength to using the silver paste. air thightness of bonding surface was confirmed by analysis of bonding interfaces.

Non-uniform virtual material modeling on contact interface of assembly structure with bolted joints

  • Cao, Jianbin;Zhang, Zhousuo;Yang, Wenzhan;Guo, Yanfei
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.557-568
    • /
    • 2019
  • Accurate modeling of contact interface in bolted joints is crucial in predicting the dynamic behavior for bolted assemblies under external load. This paper presents a contact pressure distribution based non-uniform virtual material method to describe the joint interface of assembly structure, which is connected by sparsely distributed multi-bolts. Firstly, the contact pressure distribution of bolted joints is obtained by the nonlinear static analysis in the finite element software ANSYS. The contact surface around bolt hole is divided into several sub-layers, and contact pressure in each sub-layer is thought to be evenly. Then, considering multi-asperity contact at the micro perspective, the relationship between contact pressure and interfacial virtual material parameters for each sub-layer is established by using the fractal contact theory. Finally, an experimental platform for the dynamic characteristics testing of a beam lap structure with double-bolted joint is constructed to validate the efficiency of proposed method. It is found that the theoretical results are in good agreement with experimental results by impact response in both time- and frequency-domain, and the relative errors of the first four natural frequencies are less than 1%. Furthermore, the presented model is used to examine the effect of rough contact surface on dynamic characteristics of bolted joint.

A Study on Estimating of Fretting Wear of a Spline Coupling (스플라인 커플링의 프레팅 마멸 예측에 관한 연구)

  • Kim, Eung-Jin;Lee, Sang-Don;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.256-260
    • /
    • 2009
  • Fretting is a kind of wear which effects on reliability and durability. When machine parts are joined joint in parts such as a bolt or a rivet or a pin, fretting phenomenon is occurred by micro relative movement. When fretting occurs in joint parts, there is wear which is the cause of fatigue crack. Recently, although the ways of assessment of fatigue and damage tolerance are established, there is no way to evaluate fatigue crack initiation life by fretting phenomenon. Consequently, the prediction of life and prevention plan caused by fretting are needed to improve reliability. The objective of this paper is to predict fretting wear by using a experimental method and contact analysis considering wear process. For prediction of fretting wear volume, systematic and controlled experiments with a disc-plate contact under gross slip fretting conditions were carried out. A modified Archard equation is used to calculate wear depths from the contact pressure and stroke using wear coefficients obtained from the disc-plate fretting tests.