• 제목/요약/키워드: Micro-aspheric lenses

검색결과 3건 처리시간 0.015초

Profile Measurements of Micro-aspheric Surfaces Using an Air-bearing Stylus with a Microprobe

  • Shibuya, Atsushi;Gao, Wei;Yoshikawa, Yasuo;Ju, Bing-Feng;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.26-31
    • /
    • 2007
  • A novel scanning probe measurement system was developed to enable precise profile measurements of microaspheric surfaces. An air-bearing stylus with a microprobe was used to perform the surface profile scanning. The new system worked in a contact mode and had the capability of measuring micro-aspheric surfaces with large tilt angles and complex profiles. Due to limitations resulting from the contact mode, such as possible damage caused by the contact force and lateral resolution restrictions from the curvature of the probe tip, several system improvements were implemented. An air bearing was used to suspend the shaft of the probe to reduce the contact force, enabling fine adjustments of the contact force by changing the air pressure. The movement of the shaft was measured by a linear encoder with a scale attached to the actual shaft to avoid Abbe errors. A $50-{\mu}m-diameter$ glass sphere was bonded to the tip of the probe to improve the lateral resolution of the system. The maximum contact force of the probe was 10 mN. The shaft was capable of holding the probe continuously if the contact force was less than 40 mN, and the resolution of the probe could be as high as 10 nm, The performance of the new scanning probe measurement system was verified by experimental data.

EP와 MR Polishing 복합공정에 의한 304 스테인리스강의 경면가공 (Mirrorlike Machining of SUS304 by Combined process of EP and MR Polishing)

  • 김동우;홍광표;조명우;이은상
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.267-274
    • /
    • 2010
  • Recently, the magnetorheological (MR) polishing process has been examined as a new ultra-precision polishing technology for mirror surface generation in many applications, such as aspheric lenses, biochips, micro parts, etc. This method uses MR fluids which contains micro abrasives as a polishing media, and can. It is possible to obtain nano level surface roughness under suitable process conditions, however, required polishing time is highly dependent on the applied pre-polishing methods due to its very small material removal rate. Thus, in this study, a combined polishing method is presented to reduce total polishing time for SUS304. First, the electropolishing (EP) method was applied to obtain fine surface roughness, and the MR polishing was followed. Surface roughness variations were investigated according to the process conditions. As the results of this study, it was possible to reduce total polishing time for SUS304 using the proposed combined polishing method.

다중회귀분석을 이용한 BK7 글래스 MR Polishing 공정의 재료 제거 조건 분석 (Analysis of Material Removal Rate of Glass in MR Polishing Using Multiple Regression Design)

  • 김동우;이정원;조명우;신영재
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.184-190
    • /
    • 2010
  • Recently, the polishing process using magnetorheological fluids(MR fluids) has been focused as a new ultra-precision polishing technology for micro and optical parts such as aspheric lenses, etc. This method uses MR fluid as a polishing media which contains required micro abrasives. In the MR polishing process, the surface roughness and material removal rate of a workpiece are affected by the process parameters, such as the properties of used nonmagnetic abrasives(particle material, size, aspect ratio and density, etc.), rotating wheel speed, imposed magnetic flux density and feed rate, etc. The objective of this research is to predict MRR according to the polishing conditions based on the multiple regression analysis. Three polishing parameters such as wheel speed, feed rates and current value were optimized. For experimental works, an orthogonal array L27(313) was used based on DOE(Design of Experiments), and ANOVA(Analysis of Variance) was carried out. Finally, it was possible to recognize that the sequence of the factors affecting MRR correspond to feed rate, current and wheel speed, and to determine a combination of optimal polishing conditions.