• 제목/요약/키워드: Micro-Tip

검색결과 246건 처리시간 0.03초

The effect of micro pore on the characteristics of crack tip plastic zone in concrete

  • Haeri, Hadi;Sarfarazi, V.
    • Computers and Concrete
    • /
    • 제17권1호
    • /
    • pp.107-127
    • /
    • 2016
  • Concrete is a heterogeneous material containing many weaknesses such as micro-cracks, pores and grain boundaries. The crack growth mechanism and failure behavior of concrete structures depend on the plastic deformation created by these weaknesses. In this article the non-linear finite element method is used to analyze the effect of presence of micro pore near a crack tip on both of the characteristics of crack tip plastic zone (its shape and size) and crack growth properties (such as crack growth length and crack initiation angle) under pure shear loading. The FE Code Franc2D/L is used to carry out these objectives. The effects of the crack-pore configurations and the spacing between micro pore and pre-excising crack tip on the characteristics of crack tip plastic zone and crack growth properties is highlighted. Based on the obtained results, the relative distance between the crack tip and the micro pore affects in very significant way the shape and the size of the crack tip plastic zone. Furthermore, crack growth length and crack initiation angle are mostly influenced by size and shape of plastic zone ahead of crack tip. Also the effects of pore decrease on the crack tip by variation of pore situation from linear to perpendicular configuration. The critical position for a micro pore is in front of the crack tip.

도금 및 CMP에 의한 Micro-Tip 제작 공정 연구 (A Study on Micro-Tip Fabrication by Plating and CMP)

  • 한명수;박창모;신광수;고항주;김두근;한수욱;김선훈;기현철;김효진;김장현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.152-152
    • /
    • 2009
  • We investigate micro-tip properties as Ni-Co plating and CMP processes for MEMS probe card and units. The micro-tip are fabricated by using Ni-Co plating machine, lapping machine, and chemo-mechanical polisher. In order to get high conductive and reliable micro-tip, we control Co contents and thickness by CMP speed. We have found that about 20-25% of Co contents are required and have to lapping speed of 30 rpm. Also, we investigate photolithography and Ni-Co plating processes conditions for the one-step and the three-step micro-tips.

  • PDF

교류 구동형 박막 전계 발광 소자용 원추형 Si micro-tip 반사체 어래이의 제작 (Fabrication of Cone-shaped Si Micro-tip Reflector Array for Alternating Current Thin Film Electroluminescent Device Application)

  • 주병권;이윤희;오명환
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권9호
    • /
    • pp.662-664
    • /
    • 1999
  • We fabricated AC-TFEL device having cone-shaped Si micro-tip reflector array based on the process which have been conventionally employed for the Si-tip field emitter array in FED system. As a result, the AC-TFEL device having a new geometrical structure could generate well concentrated visible white-light from 3600 reflectors/pixel under bipolar pulse excitation mode only by edge-emission mechanism.

  • PDF

AFM 부착형 초미세 다이아몬드 팁 켄틸레버의 제작 및 응용 (Fabrication of Micro Diamond Tip Cantilever for AFM and its Applications)

  • 박정우;이득우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.395-400
    • /
    • 2005
  • Nano-scale fabrication of silicon substrate based on the use of atomic force microscopy (AFM) was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional silicon cantilever for scanning. A thin damaged layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip. The damaged layer withstands against wet chemical etching in aqueous KOH solution. Diamond tip acts as a patterning tool like mask film for lithography process. Hence these sequential processes, called tribo-nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. This study demonstrates the novel fabrication processes of the micro cantilever and diamond tip as a tool for TNL using micro-patterning, wet chemical etching and CVD. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool.

  • PDF

AFM 기반 Tribo-Nanolithography 를 위한 초미세 다이아몬드 팁 켄틸레버의 제작 (Fabrication of Micro Diamond Tip Cantilever for AFM-based Tribo-Nanolithography)

  • 박정우;이득우
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.39-46
    • /
    • 2006
  • Nano-scale fabrication of silicon substrate based on the use of atomic force microscopy (AFM) was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional silicon cantilever for scanning. A thin mask layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip. The mask layer withstands against wet chemical etching in aqueous KOH solution. Diamond tip acts as a patterning tool like mask film for lithography process. Hence these sequential processes, called tribo-nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. This study demonstrates the novel fabrication processes of the micro cantilever and diamond tip as a tool for TNL using micro-patterning, wet chemical etching and CVD. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool.

미세 수관 노즐의 전기유체역학적 수적 분사특성 (Electrohydrodynamic Water Droplet Ejection Characteristics from a Micro-Water-Nozzle)

  • 문재덕
    • 전기학회논문지
    • /
    • 제59권9호
    • /
    • pp.1632-1637
    • /
    • 2010
  • A micro-water-nozzle, as one of a cooling means of micro-electronic devices, has been proposed and investigated. The I-V characteristics of the micro-water-nozzle and effect of applied voltage on the meniscus formation and deformation and ejection processes of de-ionized water on the micro-water-nozzle tip have been investigated. The water ejection processes, such as a drop formation, a drop deformation, a dripping, a cone jet, and an atomization, were taken place on the micro-water-nozzle tip by the electrohydrodynamic forces acted by the DC and AC high voltages applied on the meniscus of the micro-water-nozzle tip. The I-V characteristics of the micro-water-nozzle-to-plate electrode system were different from that of the same metal-point electrode system, due to the meniscus formation and water droplet ejection at the nozzle tip. The positive and negative DC and AC high voltages showed the water droplets ejection, the ejection rates of 1.8, 1.5 and 1.2 g/h respectively, which, however, showed that the proposed micro-water-nozzle-to-plate electrode system could be used as one of an effective pumping means.

다이아몬드 입자 전착 드릴에 의한 알루미나 성형제의 미소구멍가공 (Micro-drilling of alumina green body with diamond abrasive drills)

  • 이학구;방경근;김포진;이대길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.926-931
    • /
    • 2002
  • Although ceramic plates with many micro-hales are used as MCP (Micro-channel plate) for electron amplification, catalytic converters, filters, electrical insulators and thermal conductors in integrated circuits, the drilling of micro-hales in the ceramics is difficult because of their low thermal conductivity, high hardness and brittleness. Therefore, in this work, the machining of ceramic green body fellowed by sintering of green body was employed fur fabricating ceramic plates with many micro-holes. The micro-drilling of alumina green body was performed with diamond abrasive WC drills, and the cutting force w.r.t. drilling times was measured for the determination of toot life. From the investigation of the wear of micro-drill tip w.r.t. drilling times, the wear mechanism of tip during micro-drilling of ceramic green body was suggested.

  • PDF

Numerical Analysis of Tip Clearance Effects in a Micro Radial Inflow Turbine

  • Watanabe, Naoki;Teramoto, Susumu;Nagashima, Toshio
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.622-627
    • /
    • 2004
  • There are many difficulties in realizing Ultra-micro gas turbine system. Among them, the effects of tip clearance upon the micro turbine flowfield are discussed in this paper. The flowfield was investigated numerically with the Reynolds-averaged three-dimensional thin-layer Navier-Stokes equations. Calculations were conducted with clearance height from 0% to 10% of the passage height. Leakage mass flow and deterioration of efficiency are proportional to the clearance height for the clearance height larger than 4%. However, in the case of 2% clearance, leakage flow is significantly reduced due to relative motion of the casing and as a result deterioration of efficiency is very small. It is difficult to control tip clearance in micro turbines, but the results of this study indicate that if the clearance height is controlled within a few per-cent of passage height, deterioration of stage performance will be small.

  • PDF

Active-Matrix Cathodes though Integration of Amorphous Silicon Thin-Film Transistor with triode -and Diode-Type field Emitters

  • Song, Yoon-Ho;Cho, Young-Rae;Hwang, Chi-Sun;Kim, Bong-Chul;Ahn, Seong-Deok;Chung, Choong-Heui;Kim, Do-Hyung;Uhm, Hyun-Seok;Lee, Jin-Ho;Cho, Kyoung-Ik
    • Journal of Information Display
    • /
    • 제2권3호
    • /
    • pp.72-77
    • /
    • 2001
  • Amorphous silicon thin-film transistors (a-Si TFTs) were incorporated into Mo-tip-based triode-type field emitters and diode-type ones of carbon nanotubes for an active-matrix cathode (AMC) plate of field emission displays. Also, we developed a novel surface-treatment process for the Mo-tip fabrication, which gleatly enhanced in the stability of field emission. The field emission currents of AMC plates on glass substrate were well controlled by the gate bias of a-Si TFTs. Active-matrix field emission displays (AMFEDs) with these AMC plates were demonstrated in a vacuum chamber, showing low-voltage matrix addressing, good stability and reliability of field emission, and highly uniform light emissions from the anode plate with phosphors. The optimum design of AMFEDs including a-Si TFTs and a new light shield/focusing grid is discussed.

  • PDF

실험계획법과 유한 요소해석을 이용한 초정밀 대면적 미세 그루빙 머신의 변위 오차 예측 (Displacement Error Estimation of a High-Precision Large-Surface Micro-Grooving Machine Based on Experimental Design Method and Finite Element Analysis)

  • 이희범;이원재;김석일
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.703-713
    • /
    • 2011
  • In this study, to minimize trial and error in the design and manufacturing processes of a high-precision large-surface micro-grooving machine which is able to fabricate the molds for 42 inch LCD light guide panels, the effects of the structural deformation of the micro-grooving machine according to the positions of the X-axis, Y-axis and Z-axis feed systems were examined on the tool tip displacement errors associated with the machining accuracy. The virtual prototype (finite element model) of the micro-grooving machine was constructed to include the joint stiffnesses of the hydrostatic bearings, hydrostatic guideways and linear motors, and then the tool tip displacement errors were measured from the virtual prototype. Especially, to establish the prediction model of the tool tip displacement errors, which was constructed using the positions of the X-axis, Y-axis and Z-axis feed systems as independent variables, the response surface method based on the central composite design was introduced. The reliability of the prediction model was verified by the fact that the tool tip displacement errors obtained from the prediction model coincided well those measured from the virtual prototype. And the causes of the tool tip displacement errors were identified through the analysis of interactions between the positions of the X-axis, Y-axis and Z-axis feed systems.