• Title/Summary/Keyword: Micro-Targeting

Search Result 132, Processing Time 0.026 seconds

Determinants of Functional MicroRNA Targeting

  • Hyeonseo Hwang;Hee Ryung Chang;Daehyun Baek
    • Molecules and Cells
    • /
    • v.46 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • MicroRNAs (miRNAs) play cardinal roles in regulating biological pathways and processes, resulting in significant physiological effects. To understand the complex regulatory network of miRNAs, previous studies have utilized massivescale datasets of miRNA targeting and attempted to computationally predict the functional targets of miRNAs. Many miRNA target prediction tools have been developed and are widely used by scientists from various fields of biology and medicine. Most of these tools consider seed pairing between miRNAs and their mRNA targets and additionally consider other determinants to improve prediction accuracy. However, these tools exhibit limited prediction accuracy and high false positive rates. The utilization of additional determinants, such as RNA modifications and RNA-binding protein binding sites, may further improve miRNA target prediction. In this review, we discuss the determinants of functional miRNA targeting that are currently used in miRNA target prediction and the potentially predictive but unappreciated determinants that may improve prediction accuracy.

Rules for functional microRNA targeting

  • Kim, Doyeon;Chang, Hee Ryung;Baek, Daehyun
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.554-559
    • /
    • 2017
  • MicroRNAs (miRNAs) are ~22nt-long single-stranded RNA molecules that form a RNA-induced silencing complex with Argonaute (AGO) protein to post-transcriptionally downregulate their target messenger RNAs (mRNAs). To understand the regulatory mechanisms of miRNA, discovering the underlying functional rules for how miRNAs recognize and repress their target mRNAs is of utmost importance. To determine functional miRNA targeting rules, previous studies extensively utilized various methods including high-throughput biochemical assays and bioinformatics analyses. However, targeting rules reported in one study often fail to be reproduced in other studies and therefore the general rules for functional miRNA targeting remain elusive. In this review, we evaluate previously-reported miRNA targeting rules and discuss the biological impact of the functional miRNAs on gene-regulatory networks as well as the future direction of miRNA targeting research.

A Study on the Application Modeling of SNS Big-data for a Micro-Targeting using K-Means Clustering (K-평균 군집을 이용한 마이크로타겟팅을 위한 SNS 빅데이터 활용 모델링에 관한 연구)

  • Song, Jeo;Lee, Sang Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.321-324
    • /
    • 2015
  • 본 논문에서는 SNS에 존재하는 특정 제품과 브랜드 또는 기업에 대한 평가, 의견, 느낌, 사용 후기 등의 소비자 생각을 수집하여 기업에서 향후 신제품 개발이나 시장 진출 및 확대 등의 경영활동에 활용할 수 있도록 SNS 빅데이터를 문석하고, 이를 활용하여 보다 소집단화 되고 개인화 되어가는 Micro-Trend 중심의 마케팅 활동을 할 수 있는 Micro-Targeting 관련 분석 정보를 제공 모델링하는 것을 제안한다. 본 연구에서는 SNS 데이터의 수집, 저장, 분석에 대한 내용을 다루고 있으며, 특히 마이크로타겟팅을 위한 정보를 머하웃(Mahout)의 유클리드 거리 기반의 유사도와 K-평균 군집 알고리즘을 활용하여 구현하고자 하였다.

  • PDF

Multiplexed targeting of microRNA in stem cell-derived extracellular vesicles for regenerative medicine

  • Song, Byeong-Wook;Oh, Sekyung;Chang, Woochul
    • BMB Reports
    • /
    • v.55 no.2
    • /
    • pp.65-71
    • /
    • 2022
  • Regenerative medicine is a research field that develops methods to restore damaged cell or tissue function by regeneration, repair or replacement. Stem cells are the raw material of the body that is ultimately used from the point of view of regenerative medicine, and stem cell therapy uses cells themselves or their derivatives to promote responses to diseases and dysfunctions, the ultimate goal of regenerative medicine. Stem cell-derived extracellular vesicles (EVs) are recognized as an attractive source because they can enrich exogenous microRNAs (miRNAs) by targeting pathological recipient cells for disease therapy and can overcome the obstacles faced by current cell therapy agents. However, there are some limitations that need to be addressed before using miRNA-enriched EVs derived from stem cells for multiplexed therapeutic targeting in many diseases. Here, we review various roles on miRNA-based stem cell EVs that can induce effective and stable functional improvement of stem cell-derived EVs. In addition, we introduce and review the implications of several miRNA-enriched EV therapies improved by multiplexed targeting in diseases involving the circulatory system and nervous system. This systemic review may offer potential roles for stem cell-derived therapeutics with multiplexed targeting.

microRNA biomarkers in cystic diseases

  • Woo, Yu Mi;Park, Jong Hoon
    • BMB Reports
    • /
    • v.46 no.7
    • /
    • pp.338-345
    • /
    • 2013
  • microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by targeting the 3'-untranslated region of multiple target genes. Pathogenesis results from defects in several gene sets; therefore, disease progression could be prevented using miRNAs targeting multiple genes. Moreover, recent studies suggest that miRNAs reflect the stage of the specific disease, such as carcinogenesis. Cystic diseases, including polycystic kidney disease, polycystic liver disease, pancreatic cystic disease, and ovarian cystic disease, have common processes of cyst formation in the specific organ. Specifically, epithelial cells initiate abnormal cell proliferation and apoptosis as a result of alterations to key genes. Cysts are caused by fluid accumulation in the lumen. However, the molecular mechanisms underlying cyst formation and progression remain unclear. This review aims to introduce the key miRNAs related to cyst formation, and we suggest that miRNAs could be useful biomarkers and potential therapeutic targets in several cystic diseases.

The Inhibition of MicroRNA-139-5p Promoted Osteoporosis of Bone Marrow-Derived Mesenchymal Stem Cells by Targeting Wnt/Beta-Catenin Signaling Pathway by NOTCH1

  • Feng, Yimiao;Wan, Pengbo;Yin, Linling;Lou, Xintian
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.448-458
    • /
    • 2020
  • We investigated the therapeutic effects of microRNA-139-5p in relation to osteoporosis of bone marrow-derived mesenchymal stem cell (BMSCs) and its underlying mechanisms. In this study we used a dexamethasone-induced in vivo model of osteoporosis and BMSCs were used for the in vitro model. Real-time quantitative polymerase chain reaction (RT-PCR) and gene chip were used to analyze the expression of microRNA-139-5p. In an osteoporosis rat model, the expression of microRNA-139-5p was increased, compared with normal group. Down-regulation of microRNA-139-5p promotes cell proliferation and osteogenic differentiation in BMSCs. Especially, up-regulation of microRNA-139-5p reduced cell proliferation and osteogenic differentiation in BMSCs. Overexpression of miR-139-5p induced Wnt/β-catenin and down-regulated NOTCH1 signaling in BMSCs. Down-regulation of miR-139-5p suppressed Wnt/β-catenin and induced NOTCH1 signaling in BMSCs. The inhibition of NOTCH1 reduced the effects of anti-miR-139-5p on cell proliferation and osteogenic differentiation in BMSCs. Activation of Wnt/β-catenin also inhibited the effects of anti-miR-139-5p on cell proliferation and osteogenic differentiation in BMSCs. Taken together, our results suggested that the inhibition of microRNA-139-5p promotes osteogenic differentiation of BMSCs via targeting Wnt/β-catenin signaling pathway by NOTCH1.

Effect of Specific Interaction of Multi-Ligands on the Specific Interaction between Particle and Cell (멀티 리간드의 특이적 상호작용이 입자-세포간 상호작용에 미치는 영향)

  • Yoon, Jung Hyun;Lee, Sei Young
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.94-101
    • /
    • 2022
  • Recent advancement of micro/nano technology enables the development of diverse micro/nano particle-based delivery systems. Due to the multi-functionality and engineerability, particle-based delivery system are expected to be a promising method for delivery to the target cell. Since the particle-based delivery system should be delivered to the various kinds of target cell, including the cardiovascular system, cancer cell etc., it is frequently decorated with multiple kinds of targeting molecule(s) to induce specific interaction to the target cell. The surface decorated molecules interact with the cell surface expressed molecule(s) to specifically form a firm adhesion. Thus, in this study, the probability of adhesion is estimated to predict the possibility to form a firm adhesion for the multi-ligand decorated particle-based delivery system.

Maternal Low-protein Diet Alters Ovarian Expression of Folliculogenic and Steroidogenic Genes and Their Regulatory MicroRNAs in Neonatal Piglets

  • Sui, Shiyan;Jia, Yimin;He, Bin;Li, Runsheng;Li, Xian;Cai, Demin;Song, Haogang;Zhang, Rongkui;Zhao, Ruqian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1695-1704
    • /
    • 2014
  • Maternal malnutrition during pregnancy may give rise to female offspring with disrupted ovary functions in adult age. Neonatal ovary development predisposes adult ovary function, yet the effect of maternal nutrition on the neonatal ovary has not been described. Therefore, here we show the impact of maternal protein restriction on the expression of folliculogenic and steroidogenic genes, their regulatory microRNAs and promoter DNA methylation in the ovary of neonatal piglets. Sows were fed either standard-protein (SP, 15% crude protein) or low-protein (LP, 7.5% crude protein) diets throughout gestation. Female piglets born to LP sows showed significantly decreased ovary weight relative to body weight (p<0.05) at birth, which was accompanied with an increased serum estradiol level (p<0.05). The LP piglets demonstrated higher ratio of bcl-2 associated X protein/B cell lymphoma/leukemia-2 mRNA (p<0.01), which was associated with up-regulated mRNA expression of bone morphogenic protein 4 (BMP4) (p<0.05) and proliferating cell nuclear antigen (PCNA) (p<0.05). The steroidogenic gene, cytochrome P450 aromatase (CYP19A1) was significantly down-regulated (p<0.05) in LP piglets. The alterations in ovarian gene expression were associated with a significant down-regulation of follicle-stimulating hormone receptor mRNA expression (p<0.05) in LP piglets. Moreover, three microRNAs, including miR-423-5p targeting both CYP19A1 and PCNA, miR-378 targeting CYP19A1 and miR-210 targeting BMP4, were significantly down-regulated (p<0.05) in the ovary of LP piglets. These results suggest that microRNAs are involved in mediating the effect of maternal protein restriction on ovarian function through regulating the expression of folliculogenic and steroidogenic genes in newborn piglets.

MiR-146 and miR-125 in the regulation of innate immunity and inflammation

  • Lee, Hye-Mi;Kim, Tae Sung;Jo, Eun-Kyeong
    • BMB Reports
    • /
    • v.49 no.6
    • /
    • pp.311-318
    • /
    • 2016
  • Innate immune responses are primary, relatively limited, and specific responses to numerous pathogens and toxic molecules. Protein expression involved in these innate responses must be tightly regulated at both transcriptional level and post-transcriptional level to avoid the development of excessive inflammation that can be potentially harmful to the host. MicroRNAs are small noncoding RNAs (∼22 nucleotides [nts]) that participate in the regulation of numerous physiological responses by targeting specific messenger RNAs to suppress their translation. Recent work has shown that several negative regulators of transcription including microRNAs play important roles in inhibiting the exacerbation of inflammatory responses and in the maintenance of immunological homeostasis. This emerging research area will provide new insights on how microRNAs regulate innate immune signaling. It might show that dysregulation of microRNA synthesis is associated with the pathogenesis of inflammatory and infectious diseases. In this review, we focused on miR-146 and miR-125 and described the roles these miRNAs in modulating innate immune signaling. These microRNAs can control inflammatory responses and the outcomes of pathogenic infections.

miR-9 Modulates Osteosarcoma Cell Growth by Targeting the GCIP Tumor Suppressor

  • Zhu, Shao-Wen;Li, Jian-Peng;Ma, Xin-Long;Ma, Jian-Xiong;Yang, Yang;Chen, Yang;Liu, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4509-4513
    • /
    • 2015
  • Osteosarcoma is the most common primary bone tumor in humans, especially in childhood. However, the genetic etiology for its pathogenesis remains elusive. It is known that microRNAs (miRNAs) are involved in the development of tumor progression. Here we show that microRNA-9 (miR-9) is a potential oncogene upregulated in osteosarcoma cells. Knockdown of miR-9 in osteosarcoma resulted in suppressed colony formation and cell proliferation. Further study identified GCIP, a Grap2 and cyclin D interacting protein, as a direct target of miR-9. In addition, GCIP overexpression activated retinoblastoma 1 (Rb) and suppressed E2F transcriptional target expression in osteosarcoma cells. Moreover, GCIP depletion reversed miR-9 knockdown induced colony formation and cell proliferation suppression. In sum, these results highlight the importance of miR-9 as an oncogene in regulating the proliferation of osteosarcoma by directly targeting GCIP and may provide new insights into the pathogenesis of osteosarcoma.