• 제목/요약/키워드: Micro-Processing

검색결과 1,058건 처리시간 0.03초

Image Processing에 의한 MEMS소자의 미세한 각도측정 (Angle Measurement of MEMS Devices Image Processing)

  • 고진환;김호성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.2198-2200
    • /
    • 2000
  • This paper reports on the measurement of angle between micro mirror and substrate in. the Micro Optical Cross Connect(MOXC). MOXC consists of beam collimators and $N{\times}N$ micro mirrors that are fabricated by using MEMS technology. Using subpixel level image processing, it is possible to measure the angle with the resolution of 0.27$^{\circ}$.

  • PDF

25\μm 홀 펀칭 공구 정렬을 위한 광학 시스템 설계 (Design of Two-way Image Acquisition System for 25\μm Tool Alignment in the Micro Hole Punching)

  • 주병윤;임성한;오수익
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.190-204
    • /
    • 2004
  • The objective of this study is to develop a highly accurate micro tool alignment system applicable to the micro machining technology. In a specific application such as micro hole punching, radial clearance between micro tools is order of a few micron. Under this micron scale tool clearance, accuracy of tool alignment is very important for ensuring hole quality. In the present study, a two-way image acquisition system was developed, which can produce overlapped image of both micro tools that face each other, and applied to the tool alignment in the micro punching. Also, to meet alignment accuracy of tools within $1\mu\textrm{m}$, the cross correlation image processing algorithm was employed. With this system, $25\mu\textrm{m}$ punching tools with $1\mu\textrm{m}$ radial clearance could be accurately aligned.

엑시머 레이저를 이용한 파이렉스 유리의 미세 구멍 가공 (The Experimental Study in the Micro Drilling of Excimer Laser on Pyrex Glass)

  • 이철재;김하나;정윤상;전찬봉;박영철;강정호
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.99-103
    • /
    • 2012
  • Presently, A glass is widely used in telecommunication system, optoelectronic devices and micro electro mechanical systems. Micro drilling of glass using the laser can save processing cost and improve the accuracy. This paper experiments micro drilling using KrF excimer laser on the pyrex glass of $500{\mu}m$ thickness. We have experiment to find out optimum laser machining conditions of micro drilling of glass and ablation depth and influence by processing parameter suc'h pulse repetition rate, energy density and number of pulses. Pulse repetition rate don't influence ablation depth at the micro drilling of pyrex glass. Energy density influence micro drilling of parallelism and maximum thickness that can be drilled. Ablation depth is most influenced by number of pulses.

미소 2단 기어 부품 금형 가공을 위한 마이크로 엔드밀링 공정기술 연구 (Study on Micro Endmilling Process for Manufacturing of Very Small Gear Parts and Mold with Two-Stage)

  • 제태진;노진석;김병두;김재구;윤재성
    • 소성∙가공
    • /
    • 제19권2호
    • /
    • pp.107-112
    • /
    • 2010
  • A multi-stage gear mold including gears of 2mm and 1.5mm diameter was designed and machined in this research for developing micro gear mold manufacturing technology with micro endmill. Mechanical shapes having differential micro teeth were analyzed to be formed as designed and processing conditions were optimized by analyzing machined surface chip and cutting force. Based on the results, a prototype of micro multi-stage gear mold was manufactured.

Photo lithography을 이용한 플라즈마 에칭 가공특성에 관한 연구 (A study on processing characteristics of plasma etching using photo lithography)

  • 백승엽
    • Design & Manufacturing
    • /
    • 제12권1호
    • /
    • pp.47-51
    • /
    • 2018
  • As the IT industry rapidly progresses, the functions of electronic devices and display devices are integrated with high density, and the model is changed in a short period of time. To implement the integration technology, a uniform micro-pattern implementation technique to drive and control the product is required. The most important technology for the micro pattern generation is the exposure processing technology. Failure to implement the basic pattern in this process cannot satisfy the demands in the manufacturing field. In addition, the conventional exposure method of the mask method cannot cope with the small-scale production of various types of products, and it is not possible to implement a micro-pattern, so an alternative technology must be secured. In this study, the technology to implement the required micro-pattern in semiconductor processing is presented through the photolithography process and plasma etching.

초정밀 가공기용 마이크로 스테이지의 힌지 형상과 재질 변화에 따른 안정성 해석 (Stability Analysis of a Micro Stage for Micro Cutting Machine with Various Hinge Type and Material Transformation)

  • 김재열;곽이구;유신
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.233-240
    • /
    • 2003
  • Recently, the world are preparing for new revolution, called as If (Information Technology), NT (Nano-Technology), and BT (Bio-Technology). NT can be applied to various fields such as semiconductor-micro technology. Ultra precision processing is required for NT in the field of mechanical engineering. Recently, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts. Therefore, in this paper, stability of ultra precision cutting unit is investigated, this unit is the kernel unit in ultra precision processing machine. According to alteration of shape and material about hinge, stability investigation is performed. In this paper, hinge shapes of micro stage in UPCU(Ultra Precision Cutting Unit) are designed as two types, where, hinge shapes are composed of round and rectangularity. Elasticity and strength are analyzed about micro stage, according to hinge shapes, by FE analysis. Micro stage in ultra precision processing machine has to keep hinge shape under cutting condition with 3-component force (cutting component, axial component, radial component) and to reduce modification against cutting force. Then we investigated its elasticity and its strength against these conditions. Material of micro stage is generally used to duralumin with small thermal deformation. But, stability of micro stage is investigated, according to elasticity and strength due to various materials, by FE analysis. Where, Used materials are composed of aluminum of low strength and cooper of medium strength and spring steel of high strength. Through this stability investigation, trial and error is reduced in design and manufacture, at the same time, we are accumulated foundation data for unit control.

펨토초 레이저를 이용한 SUS304 의 마이크로 홈가공 (Micro-groove machining of SUS304 using by femto second laser)

  • 곽태수;오오모리 히토시
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1179-1180
    • /
    • 2005
  • 3D micro scaled shapes are fabricated with the method of direct writing and superposing grooving in ambient air using femto-second laser pulses and copper, aiming at establishing an industrially useful femto-second laser processing machine to be able to fabricate three dimensional micro-scale structures, especially micro scaled molds, and processing techniques. For the several advantages, there is no thermally influenced region around the area irradiated by the laser beam and surfaces irradiated laser beam are smooth and substances ablated to form are no attached on the surface of works and so on, the femto-second laser technology is anticipated for advanced micro/nano precision technology.

  • PDF

광반응사출성형 시 캐비티 엣지에서 발생하는 미세누출현상에 관한 해석적 연구 (A numerical study on micro leakage behaviors at cavity edge during photo reaction injection molding)

  • 라문우
    • Design & Manufacturing
    • /
    • 제10권3호
    • /
    • pp.8-13
    • /
    • 2016
  • Despite technological advance, there have been several troubles in photo reaction injection molding (photo RIM) to produce ultra thin light guide panels (LGPs). In this study, micro leakage problem at cavity edge during photo RIM was investigated numerically. In order to obtain optimal processing conditions, we regulated inlet pressure of injected resin at the cavity edge and figured out micro leakage behaviors. At low inlet pressure (less than 100 Pa), though the micro leakage problem was not occurred, another problem, short shot due to not enough driving force, was appeared More than 1,000 Pa of the inlet pressure, injected resin was rapidly leaked through the micro gap at the cavity edge. Finally, we obtained optimal inlet pressure around 600 ~ 1,000 Pa. At this region, injected resin fully filled the cavity without micro leakage behavior. Based on the present study, further comparative investigations with experimental photo RIM should be performed to find optimal processing conditions for produce ultra thin LGPs.

마이크로 모터의 자동화된 FEA 시뮬레이션 (Automated FEA Simulation of Micro Motor)

  • Lee Joon-Seong
    • 한국시뮬레이션학회논문지
    • /
    • 제11권3호
    • /
    • pp.13-22
    • /
    • 2002
  • This paper describes an automated evaluation of electrostatic field for micro motors whose sizes range 10 to 103um. Electric field modeling in micro motors has been generally restricted to in-plane two-dimensional finite element analysis (FEA). In this paper, the actual three-dimensional geometry of the micro motor is considered. An automatic FE mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated in the system, together with one of commercial FE analysis codes and one of commercial solid modelers. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena to be analyzed, electrostatic analysis and stress analysis and so on. The FE models are then exported to the FE analysis code, and then analyses are peformed. Then, analytical analysis and FE analysis about the torque generated by electrostatic micro motor are performed. The starting torque is proportional to $V^2$, the calculated starting torque from the two-dimensional analytical solutions are three times larger than those from the three-dimensional FE solutions.

  • PDF