• Title/Summary/Keyword: Micro-Power

Search Result 1,671, Processing Time 0.028 seconds

Design and analysis of AlN piezoelectric micro generators suitable with integration (집적화에 적합한 진동형 AlN 압전 마이크로 발전기의 설계와 해석)

  • Lee, Byung-Choel;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.239-239
    • /
    • 2010
  • This paper describes the design and analysis of AlN piezoelectric micro generator. The generator was designed to convert ambient vibration energy to electrical power as a AlN piezoelectric material compatible with integataion process. From the simulation results, the resonance frequency of designed model is about 360 Hz and analyzed the bending mode, displacement and expectation output.

  • PDF

MEMS Packaging Technology and Micro Sensors (MEMS Packaging 기술 및 마이크로센서)

  • 최상언
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.09a
    • /
    • pp.55-85
    • /
    • 2000
  • MEMS(Micro Electro Mechanical System) technology. MEMS Inertial Sensors promise a new wide market for many areas -Challenge. significant cost reduction by wafer level packaging and testing. decreasing of power consumption by miniaturization. enhancing of performance and reliability. on-chip integration for multiplicity. MEMS is newly emerging technology.

  • PDF

A Study on the Application of Micro Hydro Power Generator at the Water Treatment Plant (정수장 마이크로 소수력 발전기 적용에 대한 연구)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Kim, Il-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.67-72
    • /
    • 2014
  • Inflow or outflow from the water treatment plant and the sewage water has potential energy. If this potential energy can be converted into electrical energy by water turbine generator, it can help to save energy because of the high capacity utilization. So recently, micro hydro power plant is reviewed in the water treatment facility. If generation capacity is low, induction generator is primarily used. If output capacity is low, generated power is supplied to the inside load. Induction generator can cause voltage drop by the inrush current at a start-up and requires reactive power for magnetization. In this study, we analyzed the flow of power and voltage variation against inrush current that occurs when the induction generator starts under the terms that loads of linear and non-linear of the water purification plant are used. Analysis results are that the voltage drop is within an allowable range and the power factor is slightly reduced by the need of reactive power.

A Study on Energy Harvester with Cantilever Structure Using PZT Piezoelectric Material (PZT 압전재료를 이용한 외팔보 구조의 에너지 수집기에 관한 연구)

  • Cha, Doo-Yeol;Lee, Soo-Jin;Chang, Sung-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.416-421
    • /
    • 2011
  • Nowadays, the increasing demands upon mobile devices such as wireless sensor networks and the recent advent of low power electrical devices such as MEMS make such renewable power sources attractive. A vibration-driven MEMS lead zirconate titanate $Pb(Zr,Ti)O_3$ (PZT) cantilever device is developed for energy harvesting application. This paper presents a piezoelectric based energy harvester which is suitable for power generating from conventional vibration and has in providing energy for low power electron ic devices. The PZT cantilever is used d33 mode to get the electrical power. The PZT cantilever based energy harvester with the dimension of 7 mm${\times}$3 mm${\times}$0.03 mm is fabricated using micromachining technologies. This PZT cantilever has the mechanical resonance frequency with a 900 Hz. With these conditions, we get experimentally the 37 uW output power from this device with the application of 1g acceleration using the 900 Hz vibration. From this study, we show the feasibility of one of energy harvesting candidates using PZT based structure. This PZT energy harvester could be used for various applications such a batteryless micro sensors and micro power generators.

The policy study on the power grid operation strategy of new and renewable energy combined generation system (도서지역의 신재생에너지복합발전 전력계통 운영방안에 관한 정책연구)

  • Kim, Eui Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.109.1-109.1
    • /
    • 2011
  • KEPCO was operating power plants with diesel generators in 49 islands including Baekryeong-Do, and the generation capacity was about 66 MW in 2008. The cost of fuel is increasing by the international oil price inflation and continuous rise of oil price is predicted. For the stabilizing of electric power supply to the separate islands, renewable energy and fuel cell systems were considered. Hydrogen is made using renewable energy such as wind power and solar energy, and then a fuel cell system generates electricity with the stored hydrogen. Though the system efficiency is low, it is treated as the only way to secure the stable electric supply using renewable energy at this present. The analytic hierarchy process was used to select suitable candidate island for the system installation and 5 islands including Ulleung-Do were selected. Economic evaluation for the system composed of a kerosene generator, a wind power, an electrolysis, and a fuel cell system was conducted with levelized generation cost based on present value methode. As the result, the necessity of renewable energy combined generation system and micro grid composition in the candidated islands was confirmed. Henceforth, the development of an integration technology which connects micro grid to the total power grid will be needed.

  • PDF

Development of App. for Visualization of Micro Hydro Power Potential (초소수력 발전 잠재량의 가시화를 위한 앱 개발)

  • Kim, Dong Hyun;Yang, Chang Wook;Lee, Seung Oh
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • Interest in all kinds of renewable energies has been highly increased while the micro-small-hydro power(MSHP) development has shown relatively slowly growth because of the negative public recognition about dam site development. It is, however, announced that the micro-SHP shows higher energy conversion efficiency compared to other renewable energies and does not emit any carbon dioxide. Thus, it is concerned about the development and application of micro-SHP as an alternative energy. In this study, the application for Android was exploited with Eclipse to visualize readily the potential realizable amount of hydropower by micro-SHP. With this application, we can select the region from the map, obtain the design discharge of the selected site was calculated with HEC-HMS, presented by U.S. Army of Corp. and perform the simply economic analysis in sequence. Yeongwol in Gangwon-do Province, Korea was chosen as the target area since historically abundant precipitation was found and it is possible to obtain fundamental data from WAMIS. Results from this study could be expanded the whole region of Korea. Also, the initial investment cost would be reduced if the location for micro-SHP would be determined properly, because this application can help us easily select and examine the potential micro-SHP sites without on-the-spot visit.

Surface Characterization of the Activated Carbon Fibers After Plasma Polymerization of Allylamine

  • Lu, Na;Tang, Shen;Ryu, Seung-Kon;Choi, Ho-Suk
    • Carbon letters
    • /
    • v.6 no.4
    • /
    • pp.243-247
    • /
    • 2005
  • Plasma polymerization of allylamine subsequently after plasma pre-treatment was conducted on the activated carbon fibers (ACFs) for the immobilization of amine groups in the surface of ACFs. The change of structural properties of ACFs with respect to different polymerization conditions was investigated through BET method. The change of surface morphologies of ACFs with respect to different plasma polymerization power was also studied through AFM. It was found that the structural properties such as specific surface area and micropore volume could be optimized under certain plasma deposition conditions. It was reckoned that treatment and deposition showed adverse effect on plasma polymerization, in which the former developed the micro-structures of the ACFs and the latter tended to block the micro pores. The Fourier transform infrared spectroscopy (FTIR) revealed that the poly(allylamine) was successfully immobilized on the surface of ACFs and the amount of the deposited polymer layer was related to the plasma polymerization power. SEM results showed that the plasma deposited polymer layer were small and homogenously distributed. The size and the distribution of particles deposited were closely related to the plasma polymerization power, too.

  • PDF

A Study on the Decision of Appropriate Subsidy Levels for Energy Storage Systems Considering Load Leveling in Smart Place (부하평준화 기능을 고려한 주택용 ESS의 적정 지원금 산정에 관한 연구)

  • Kim, Jung-Hoon;Hwang, Sung-Wook;Lee, Hak-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.211-216
    • /
    • 2014
  • Construction of power plants and T&D facilities is so difficult because of the civil complaints and the additional cost according to the concerning field conditions. Therefore, various researches and methods have been considered to get solutions in the demand side and energy storage systems have been in the spotlight because of the various functions such as peak shaving, load shifting, and power system stabilizing, and so on. Residential small size batteries are considered in this paper and the economic analysis is carried out to evaluate the reasonable subsidy levels for the deployment of energy storage systems. Various economic parties are considered to find reasonable subsidy level comparing each other, which parties consist of utilities, participants and non-participants in general. The evaluation is based on California Standard Practice Test and the results are able to be used as subsidy guidelines.

A Seamless Transfer Method of Bidirectional DC-DC Converter for ESS in DC Micro-grids (DC 마이크로그리드에서 에너지 저장장치를 위한 양방향 DC-DC컨버터의 무순단 절체 제어기법)

  • Kwon, Min-Ho;Park, Jung-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.194-200
    • /
    • 2014
  • In DC micro-grid system energy storage systems (ESS) are responsible for storing energy and balancing power. Also, control target of the bidirectional DC-DC converter(BDC) for ESS should be changed depending on the operating mode. During the grid connected mode, the BDC controls the battery current or voltage. When a grid fault occurs, the BDC should change the control target to regulate the DC-bus. The BDC with conventional control method may experience large transient state during the mode change. This paper proposes a control method of BDC for ESS. The proposed control method is able to provide autonomous and seamless mode transfer by a variable current limiter. To validate the proposed concept, simulation results using PSIM and experimental results from a 2kW prototype are provided.

Characteristics of Copper Plating Solutions for Electroforming of Microcircuit (미세 배선 성형을 위한 전주용 동도금액의 특성)

  • Park, Hae-Deok;Jang, Do-Yeon;Gang, Seong-Gun
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.820-832
    • /
    • 2001
  • In order to obtain the basic data on the optimum conditions of electroforming process for fabricating the micro wiring pattern for plate type micro- motor core, characteristics of plating bath and properties of deposits were studied with various copper plating baths which contain sulfate, fluoborate, pyrophosphate and cyanide salt, respectively. Cathodic polarization, throwing power, internal stress, texture and surface morphology of deposits were observed. Throwing power of plating solution is deeply related to the polarization curves and the values are in the range of +20∼20%. The order of values ate as follows- pyrophosphate, cyanide, sulfate and fluoborate bath. Internal stresses of deposits are tensile in all of the copper plating bath. Thickness of the deposits plated at the center of holes has the highest value in the pyrophosphate bath and K factor, ratio of height and width of deposit, is 1.44. It was confirmed that the pyrophosphate bath was the best one for the electroforming of wire pattern.

  • PDF