• Title/Summary/Keyword: Micro-Post

Search Result 324, Processing Time 0.025 seconds

Late-term healing in an augmented sinus with different ratios of biphasic calcium phosphate: a pilot study using a rabbit sinus model

  • Lim, Hyun-Chang;Hong, Ji-Youn;Lee, Jung-Seok;Jung, Ui-Won;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.1
    • /
    • pp.57-69
    • /
    • 2016
  • Purpose: The aim of this pilot study was to determine the osteoconductivity and dimensional stability of augmented sinuses using different ratios of biphasic calcium phosphate (BCP) in a rabbit sinus model. Methods: Each sinus of New Zealand white rabbits (2.5-3.5 kg) was assigned to one of two groups: BCP with a hydroxyapatite to ${\beta}$-tricalcium phosphate (HA:${\beta}$-TCP) ratio of 70:30 (group TCP30) and BCP with an HA:${\beta}$-TCP ratio of 30:70 (group TCP70). After preparing a window in the antral wall of a sinus, the Schneiderian membrane was elevated, and the applicable material was grafted. A fluorochrome calcein green was injected five days before euthanizing the animals at four months post-surgery. The specimens were analyzed histologically, histomorphometrically, and by using micro-computed tomography (micro-CT). Results: Micro-CT analysis revealed that the total augmented volume and the new bone volume did not differ significantly between the two groups whereas the resorption of materials was greater in the TCP70 group. The trabecular thickness, number, and separation also did not differ significantly between the two groups. Histomorphometrically, the areas of total augmentation, new bone, and residual material, as well as the ratio of new-bone-material contact did not differ significantly between the groups. Histologically, the residual particles were more scattered in the TCP70 group than in the TCP30 group. The fluorescence of the calcein green did not differ notably between the two groups. Conclusions: The osteoconductivity and dimensional stability of the two BCPs with different ratios tested in this study were comparable after four months of healing. Therefore, we conclude that both BCPs show promise as a bone substitute for sinus augmentation.

A micro-computed tomographic evaluation of root canal filling with a single gutta-percha cone and calcium silicate sealer

  • Kim, Jong Cheon;Moe, Maung Maung Kyaw;Kim, Sung Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.2
    • /
    • pp.18.1-18.9
    • /
    • 2020
  • Objectives: The purpose of this study was to evaluate the void of root canal filling over time when a calcium silicate sealer was used in the single gutta-percha cone technique. Materials and Methods: Twenty-four J-shaped simulated root canals and twenty-four palatal root canals from extracted human maxillary molars were instrumented with ProFile Ni-Ti rotary instruments up to size 35/0.06 or size 40/0.06, respectively. Half of the canals were filled with Endoseal MTA and the other half were with AH Plus Jet using the single gutta-percha cone technique. Immediately after and 4 weeks after the root canal filling, the samples were scanned using micro-computed tomography at a resolution of 12.8 ㎛. The scanned images were reconstructed using the NRecon software and the void percentages were calculated using the CTan software, and statistically analyzed by 1-way analysis of variance, paired t-test and Tukey post hoc test. Results: After 4 weeks, there were no significant changes in the void percentages at all levels in both material groups (p > 0.05), except at the apical level of the AH Plus Jet group (p < 0.05) in the simulated root canal showing more void percentage compared to other groups. Immediately after filling the extracted human root canals, the Endoseal MTA group showed significantly less void percentage compared to the AH Plus Jet group (p < 0.05). Conclusions: Under the limitations of this study, the Endoseal MTA does not seem to reduce the voids over time.

Micro-computed tomographic assessment of the shaping ability of the One Curve, One Shape, and ProTaper Next nickel-titanium rotary systems

  • Tufenkci, Pelin;Orhan, Kaan;Celikten, Berkan;Bilecenoglu, Burak;Gur, Gurkan;Sevimay, Semra
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.3
    • /
    • pp.30.1-30.11
    • /
    • 2020
  • Objectives: This micro-computed tomographic (CT) study aimed to compare the shaping abilities of ProTaper Next (PTN), One Shape (OS), and One Curve (OC) files in 3-dimensionally (3D)-printed mandibular molars. Materials and Methods: In order to ensure standardization, 3D-printed mandibular molars with a consistent mesiobuccal canal curvature (45°) were used in the present study (n = 18). Specimens were instrumented with the OC, OS, or PTN files. The teeth were scanned pre- and post-instrumentation using micro-CT to detect changes of the canal volume and surface area, as well as to quantify transportation of the canals after instrumentation. Two-way analysis of variance was used for statistical comparisons. Results: No statistically significant differences were found between the OC and OS groups in the changes of the canal volume and surface area before and after instrumentation (p > 0.05). The OC files showed significantly less transportation than the OS or PTN systems for the apical section (p < 0.05). In a comparison of the systems, similar values were found at the coronal and middle levels, without any significant differences (p > 0.05). Conclusions: These 3 instrumentation systems showed similar shaping abilities, although the OC file achieved a lesser extent of transportation in the apical zone than the OS and PTN files. All 3 file systems were confirmed to be safe for use in mandibular mesial canals.

Design of a Propeller Type Rim-Driven Axial-Flow Turbine for a Micro-Hydropower System (마이크로 수력 발전을 위한 프로펠러형 림구동 축류 터빈 설계)

  • Oh, Jin-An;Bang, Deok-Je;Jung, Rho-Taek;Lee, Su-Min;Lee, Jin-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.183-191
    • /
    • 2022
  • A design method for a propeller type rim-driven axial-flow turbine for a micro-hydropower system is presented. The turbine consists of pre-stator, impeller and post-stator, where the pre-stator plays a role as a guide vane to provide circumferential velocity to the on-coming flow, and the impeller as a rotational power generator by absorbing angular momentum of the flow. BEM(Blade Element Method), which is based on the turbine Euler equation, is employed to design the pre-stator and impeller blades. NACA 66 thickness form and a=0.8 mean camber line, which is widely accepted as a marine propeller blade section, is used for the pre-stator and turbine blade section. A CFD method, derived from the discretization of the RANS equations, is applied for the analysis of the designed turbine system. The design conditions of the turbine is confirmed by the CFD calculation. Turbine characteristic curve is calculated by the CFD method, in order to provide the performance characteristics at off-design operation conditions. The proposed procedures for the design of a propeller type rim-driven axial-flow turbine are established and confirmed by the CFD analysis.

Morphological characteristics of the mesiobuccal root in the presence of a second mesiobuccal canal: a micro-CT study

  • Lucas P. Lopes Rosado;Matheus Lima Oliveira;Karla Rovaris;Deborah Queiroz Freitas;Frederico Sampaio Neves
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.1
    • /
    • pp.6.1-6.9
    • /
    • 2022
  • Objectives: This study investigated the internal morphology of mesiobuccal (MB) roots of maxillary molars with a second mesiobuccal (MB2) canal. Materials and Methods: Forty-seven maxillary first or second molars from Brazilians were scanned using micro-computed tomography. The following measurements were obtained from the MB roots: root thickness, root width, and dentin thickness of the buccal aspect of the first mesiobuccal (MB1) canal, between the MB1 and MB2 canals, and the palatal aspect of the MB2 and MB1 canals at 3 mm from the root apex and in the furcation region. For statistical analysis, the Student's t-test and analysis of variance with the post-hoc Tukey test were used (α = 0.05). Results: In maxillary molars with an MB2 canal, MB roots were significantly thicker (p = 0.0014) and narrower (p = 0.0016) than in maxillary molars without an MB2 canal. The dentin thickness of the palatal aspect of the MB1 canal was also significantly greater than that of MB roots without an MB2 canal at 3 mm from the root apex (p = 0.0007) and in the furcation region (p < 0.0001). In the furcation region of maxillary molars with an MB2 canal, the dentin thickness between the MB1 and MB2 canals was significantly smaller than that in the buccal and palatal aspects (p < 0.0001). Conclusions: The internal morphology of MB roots of maxillary molars with an MB2 canal revealed differences in dentin thickness, root diameter, and distance between the canals when compared with maxillary molars without an MB2 canal.

Incidence of postoperative pain after using single continuous, single reciprocating, and full sequence continuous rotary file system: a prospective randomized clinical trial

  • Umesh Kumar;Pragnesh Parmar;Ruchi Vashisht;Namita Tandon;Charan Kamal Kaur
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.23 no.2
    • /
    • pp.91-99
    • /
    • 2023
  • Background: Extrusion of debris is a major factor that results in postoperative pain during root canal treatment with various instruments and instrumentation techniques. Therefore, instrumentation techniques that extrude minimal debris into the periapical area while reducing pain are desirable. This study aimed to compare the incidence of postoperative pain and intake of analgesic medication (frequency and quantity) after endodontic treatment of mandibular posterior teeth using two single files and full-sequence continuous rotary systems with different kinematic motions. Methods: Thirty-five of 105 patients were assigned equally to three groups according to the instrumentation system used: ProTaper Next (PN) X2, 25/06 (Dentsply, Maillefer, Ballaigues, Switzerland), One Shape (OS), #0.25/06 (Micro Mega, Besancon, France), and Wave One Gold (WG), Red - #0.25, 0.07 (Dentsply, Maillefer, Ballaigues, Switzerland). Five specialists were included in this study design; each professional prepared 21 teeth, and randomly selected 7 per instrument system. The VAS sheet ranging from 0 to 10 was used to record the initial and postoperative pains at 24, 48, and 72 h, and 7th day after single visit endodontic treatment in mandibular premolars and molars with a diagnosis of asymptomatic irreversible pulpitis with or without apical periodontitis. Postoperatively, an analgesic, ibuprofen 400 mg was administered for intolerable pain at a dose of 1 tablet for 6 h. The patients were asked over the telephone regarding postoperative pain at intervals of 24, 48, and 72 h, and 7th day using a visual analogue scale. Result: There were no statistically significant differences among the PN, OS, and WG systems (P > 0.05) with regard to the incidence of postoperative pain at any of the four time points assessed. Conclusion: The intensity of postoperative pain, frequency, and analgesic intake were similar across all three types of instrument systems; however, the reciprocating single file (WG) was associated with less postoperative pain than the full sequence continuous rotary file.

Mechanical Properties of the Flash Butt Welded Joint of 590MPa High Strength Steel (590MPa급 고강도강 플래시버트 용접이음부의 기계적특성)

  • Jeong, Bo-Young;Woo, In-Su;Kim, Jeong-Kil;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.25 no.2
    • /
    • pp.55-61
    • /
    • 2007
  • Flash butt weldability of 590MPa dual phase steel is carried out under micro metallographical examination and macro mechanical property tests. The objective of present study is to investigate the cause that brings on bond line fracture, and is to improve mechanical properties of the flash butt welded joint. The joint of flash butt welding has a superior tensile property, but has bad formability due to oxide formed at bond interface. The HAZ softening in the weld joint does not show. It was found that mechanical properties were increased with optimizing welding parameters and making application of oil dripping and post-weld heat treatment.

Finite thickness and tow phase shift effects on the mechanical behavior of plain weave textile composites (두께와 위상각의 변화가 평직복합재료 미세구조의 거동에 미치는 영향)

  • 우경식
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.11-24
    • /
    • 2000
  • In this paper, finite thickness and tow phase effects on the mechanical behavior were studied numerically for plain weave textile composites. Unit cell analysis based on a superposition method was employed to simulate uniaxial tensile loading condition and macro-element post-processor was used to reduce computer resource requirement. The effective moduli and micro-stress distribution were calculated for finite thick plain weave composites with phase shifts. Single layer and infinitely thick configurations were also considered for comparison.

  • PDF

Accurate Positioning of Piezoelectric Actuator for Fast Tool Servo in Ultraprecision Machine (초정밀 가공기용 FTS를 위한 압전 액츄에이터의 위치제어)

  • 김호상;정병철;송승훈;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.446-449
    • /
    • 1995
  • In this paper, the accurate end position control method of ultraprecision machine tool post using piezoelectric material as an micro positonong devics is presented. This method employs the classical PID feedback and uses an additional notch filter which eliminates the resonance characteristics of controlled plant. And the simple predictor is added to make use of the future value of desired input for better tracking performance. To show the feasibilty of proposed method, the PC-based experimental apparacy can be obtained. Using method, Al specimen of diameter 100mm was cut under practical machining condition to test the practicability of proposed method.

  • PDF

Analysis of corrugated board panels under compression load

  • Biancolini, M.E.;Brutti, C.;Porziani, S.
    • Steel and Composite Structures
    • /
    • v.9 no.1
    • /
    • pp.1-17
    • /
    • 2009
  • This paper is focused on the buckling and post buckling behaviour of rectangular corrugated board panels simply supported and subjected to compression load. The aim of the work is to understand the failure mechanism of investigated structure in order to quantify the effect of design parameters on the strength of a panel of given geometry. Two numerical models were developed adopting the finite element method. In the first one the corrugated board is represented by means of shell elements adopting an equivalent material, in the second the local structure is described in full detail modelling both straight and corrugated layers by means of shell elements and representing the connection between layers by special interface elements. The model correctness was checked by the comparison between out of plane central displacement predicted by the models and the experimental values found in literature. For the same case the effect of panel planarity error was evaluated. Finally a parametric analysis to investigate the effect of design parameters was carried out.