• Title/Summary/Keyword: Micro-Post

Search Result 327, Processing Time 0.024 seconds

Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites

  • Fenjan, Raad M.;Faleh, Nadhim M.;Ahmed, Ridha A.
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.147-156
    • /
    • 2020
  • This research is related to nonlinear stability analysis of advanced microbeams reinforced by Graphene Platelets (GPLs) considering generic geometrical imperfections and thermal loading effect. Uniform, linear and nonlinear distributions of GPLs in transverse direction have been considered. Imperfection sensitivity of post-bucking behaviors of the microbeam to different kinds of geometric imperfections have been examined. Geometric imperfection is first considered to be identical as the first buckling mode, then a generic function is employed to consider sine-type, local-type and global-type imperfectness. Modified couple stress theory is adopted to incorporate size-dependent behaviors of the beam at micro scale. The post-buckling problem is solved analytically to derive load-amplitude curves. It is shown that post-buckling behavior of microbeam is dependent on the type geometric imperfection and its magnitude. Also, post-buckling load can be enhanced by adding more GPLs or selecting a suitable distribution for GPLs.

Extraction of S-Parameters for a Slot Unit on the Post-Wall Waveguide from Measured Data

  • Lee, Jae-Ho;Park, Jung-Yong
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.122-127
    • /
    • 2012
  • Post-wall waveguide structures have attracted a great deal of attention for micro- and millimeter-wave applications. One of the waveguide’s applications is a slotted waveguide array. In order to design the slotted array, the characteristics of a slot unit alone on the post-wall waveguide should be investigated. In this paper, a method for extracting the S-parameters of a unit slot is proposed. This simple method requires only two kinds of waveguides: waveguides without a slot unit and waveguides with a slot unit. Three kinds of slot units are fabricated, and the extracted results show a high level of agreement with predicted (simulated) results. With this method, the equivalent slot length can also be found.

Changes in Brain Activity of Rats due to Exposure to Fine Dust Using 18F-FDG PET (18F-FDG PET를 이용한 미세먼지 노출에 따른 쥐(rat)의 뇌 활성도 변화)

  • Cho, Yun-Ho;Cho, Kyu-Sang;Lee, Wang-Hui;Choi, Jea-Ho
    • Journal of radiological science and technology
    • /
    • v.45 no.3
    • /
    • pp.225-232
    • /
    • 2022
  • Fine dust threatens human health in various forms, depending on the particle size, such as by causing respiratory, cardiovascular, and brain diseases, after entering the body via the lungs. The aim of this study was to correlate fine dust exposure with changes in brain blood flow in Sprague Dawley rats by using micro-positron emission tomography and elucidate the possibility of developing cerebrovascular diseases caused by fine dust. The subjects were exposured to an average fine dust (particulate matter 2.5) of 206.2 ± 7.74 to ten rats four times a day, twice a day for 90 min. Before the experiment, they were maintained at NPO to the maximize the intake of 18F-fluorodeoxy glucose(18F-FDG) and minimize changes in the 18F-FDG biomass depending on the ambient environment and body temperature of the rats. PET images were acquired in the list mode 40 min after injecting 18F-FDG 44.4 MBq into the rats tail vein using a micro-PET scanner pre and post exposure to fine dust. We found that the whole brain level of 18F-FDG standardized uptake value in rats averaged 5.21 ± 0.52 g/mL pre and 4.22 ± 0.48 g/mL post exposure to fine dust, resulting in a statistically significant difference. Fine dust was able to alter brain activity after entering the body via the lungs in various forms depending on the particle size.

Effect of Post Heat Treatment Temperature on Interface Diffusion Layer and Bonding Force in Roll Cladded Ti/Mild steel/Ti Material (압연 클래드된 Ti/Mild steel/Ti 재의 계면확산층과 접합력에 미치는 후열처리온도의 영향)

  • Lee, Sangmok;Kim, Su-Min;We, Se-Na;Bae, Dong-Hyun;Lee, Geun-An;Lee, Jong-Sup;Kim, Yong-Bae;Bae, Dong-Su
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.316-323
    • /
    • 2012
  • The aim of this study is to investigate the effect of post heat treatment on bonding properties of roll cladded Ti/MS/Ti materials. First grade Ti sheets and SPCC mild steel sheets were prepared and then Ti/MS/Ti clad materials were fabricated by a cold rolling and post heat treatment process. Microstructure and point analysis of the Ti/MS interfaces were performed using the SEM and EDX Analyser. Diffusion bonding was observed at the interfaces of Ti/MS. The thickness of the diffusion layer increased with post heat treatment temperature and the diffusion layer was verified as having $({\epsilon}+{\zeta})+({\zeta}+{\beta}-Ti)$ intermetallic compounds at $700^{\circ}C$ and an $({\zeta}+{\beta}-Ti)$ intermetallic compound at $800^{\circ}C$, respectively. The micro Knoop hardness of mild steel decreased with post heat treatment temperature; however, those of Ti decreased at a range of $500{\sim}600^{\circ}C$ and showed a uniform value until $800^{\circ}C$ and then increased rapidly up to $900^{\circ}C$. The micro Knoop hardness value of the diffusion layer increased up to $700^{\circ}C$ and then saturated with post heat treatment. A T-type peel test was used to estimate the bonding forces of Ti/Mild steel interfaces. The bonding forces decreased up to $800^{\circ}C$ and then increased slightly with post heat treatment. The optimized temperature ranges for post heat treatment were $500{\sim}600^{\circ}C$ to obtain the proper formability for an additional plastic deformation process.

Clinical and Electromyographic Study of the Effects of Ultrasonic Wave and Microwave Diathermy Treatment on the Craniomandibular Disorder Patients (두개하악장애 환자에 대한 초음파와 극초단파 심부투열치료 효과의 임상 및 근전도학적 연구)

  • Hye-Jin Lee;Myung-Yun Ko
    • Journal of Oral Medicine and Pain
    • /
    • v.16 no.1
    • /
    • pp.103-111
    • /
    • 1991
  • This study was performed to observe the effect of micro-wave diathermy and ultrasonic-wave diathermy on the craniomandibular disorder patients. 19 patients were classified into 12 acute and 7 chronic groups according to the duration of 6 months. They were treated with micro-wave diathermy and ultrasonic-wave diathermy for 2 weeks and pain, maximum comfortable opening, active range of motion were checked before and after therapy. Electromyographic activities of temporal and masseter muscles were also measured at physiologic rest position, clenching and mastication before and after therapy. The obtained results were as follows : 1. After treatment, pain were reduced and active range of motion and maximum comfortable opening were increased. 2. Temporoal and masseter muscle activities of post-treatment in rest position, clenching and mastication were lower than those of pre-treatment. 3. In rest position, temporal and masseter muscle activities of pre-treatment on affected sides were higher than those on unaffected sides, but there were no differences in muscle activities between affected ad unaffected sides on clenching and mastication in pre and post-treatment respectively. 4. There were no significant differences in active range of motion, pain and maximum comfortable opening between acute and chronic groups in pre and post-treatment but there were significant differences between pre-treatment and post-treatment in acute and chronic groups respectively. 5. Muscle activities of masseter and temporal muscles in acute and chronic patients were reduced in rest position after treatment.

  • PDF

The Effects of Gas Compositions During Post Nitriding on the AISI 316L Stainless Steel after Plasma Carburizing

  • Lee, Insup
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.269-274
    • /
    • 2015
  • In this experiment, post-nitriding treatment was performed at $400^{\circ}C$ on AISI 316 stainless steel which was plasma carburized previously at $430^{\circ}C$ for 15 hours. Plasma nitriding was implemented on AISI 316 stainless steel at various gas compositions (25% $N_2$, 50% $N_2$ and 75% $N_2$) for 4 hours. Additionally, during post nitriding Ar gas was used with $H_2$ and $N_2$ to observe the improvement of surface properties. After treatment, the behavior of the hybrid layer was investigated by optical microscopy, X-ray diffraction, and micro-hardness testing. Potentiodynamic polarization test was also used to evaluate the corrosion resistance of the samples. Meanwhile, it was found that the surface hardness increased with increasing the nitrogen gas content. Also small percentage of Ar gas was introduced in the post nitriding process which improved the hardness of the hardened layer but reduced the corrosion resistance compared with the carburized sample. The experiment revealed that AISI 316L stainless steel showed better hardness and excellent corrosion resistance compared with the carburized sample, when 75% $N_2$ gas was used during the post nitriding treatment. Also addition of Ar gas during post nitriding treatment degraded the corrosion resistance of the sample compared with the carburized sample.

The effects of post nitriding on the AISI 316 stainless steel after Plasma carburizing at various gas compositions (저온 플라즈마침탄처리된 316L 스테인레스 스틸의 플라즈마 후질화 처리시 표면특성에 미치는 가스조성의 영향)

  • Lee, In-Seop;Debnath, Sanket
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.177-178
    • /
    • 2012
  • In this experiment, post-nitriding treatment has been performed at $400^{\circ}C$ on AISI 316 stainless steel which is plasma carburized previously at $430^{\circ}C$ for 15 hours. Plasma nitriding was implemented on AISI 316 stainless steel at various gas compositions (25% N2, 50% N2 and 75% N2) for 4 hours. Additionally, during post nitriding Ar gas was used with H2 and N2 to observe the improvement of treatment. After treatment, the behavior of the hybrid layer was investigated by optical microscopy, X-ray diffraction, and micro-hardness testing. Potentiodynamic polarization test was also used to evaluate the corrosion resistance of the samples. Meanwhile, it was found that the surface hardness increased with increasing the nitrogen gas content. Also small percentage of Ar gas was introduced in the post nitriding process which improved the hardness of the hardened layer but reduces the corrosion resistance compared with the carburized sample. The experiment revealed that AISI 316L stainless steel showed better hardness and excellent corrosion resistance compared with the carburized sample, when 75% N2 gas was used during the post nitriding treatment. Also addition of Ar gas during post nitriding treatment were degraded the corrosion resistance of the sample compared with the carburized sample.

  • PDF

Study on the effect of Post Open laser Lumbar Micro-discectomy on the Cross Section Area of Deep Muscles in Patients (요추부 미세 현미경 레이져 디스크 수술(OLM)이 환자의 심부근육 단면적 크기에 미치는 영향)

  • Kong, Bong-Jun;Kim, Jin-Sang;Min, Dong-Ki
    • PNF and Movement
    • /
    • v.10 no.2
    • /
    • pp.25-31
    • /
    • 2012
  • Purpose : The purpose of this study is to figure out the effects of Open Laser Microdiscectomy(OLM) on deep muscles by comparing multifidus and longissimus muscle size (cross section area; CSA) of pre and post operation. Methods : The subjects consisted of forty patients who had OLM. The data were analyzed with paired t-test comparing left and right deep muscle CSA of pre and post-operation, and both the deep muscle CSA of pre and post-operation, using SPSS ver. 15.0 program. Results : The results of this study showed a significant difference in deep muscle size (CSA) between pre and post operation (p<.05). Although there was not a meaningful difference between right and left deep muscle size (CSA) in pre operation (p>.05), there was a significant difference between both of them in post operation (p<.05). Conclusion : Therefore we made the conclusion that the operation causes decrease of muscle tone in deep muscles and muscle imbalance by causing muscle atrophy in the lumbar deep muscle after the operation.

MicroRNA-1 in Cardiac Diseases and Cancers

  • Li, Jianzhe;Dong, Xiaomin;Wang, Zhongping;Wu, Jianhua
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.359-363
    • /
    • 2014
  • MicroRNAs (miRs) are endogenous ${\approx}22$-nt non-coding RNAs that participate in the regulation of gene expression at post-transcriptional level. MiR-1 is one of the muscle-specific miRs, aberrant expression of miR-1 plays important roles in many physiological and pathological processes. In this review, we focus on the recent studies about miR-1 in cardiac diseases and cancers. The findings indicate that miR-1 may be a novel, important biomarker, and a potential therapeutic target in cardiac diseases and cancers.

Rules for functional microRNA targeting

  • Kim, Doyeon;Chang, Hee Ryung;Baek, Daehyun
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.554-559
    • /
    • 2017
  • MicroRNAs (miRNAs) are ~22nt-long single-stranded RNA molecules that form a RNA-induced silencing complex with Argonaute (AGO) protein to post-transcriptionally downregulate their target messenger RNAs (mRNAs). To understand the regulatory mechanisms of miRNA, discovering the underlying functional rules for how miRNAs recognize and repress their target mRNAs is of utmost importance. To determine functional miRNA targeting rules, previous studies extensively utilized various methods including high-throughput biochemical assays and bioinformatics analyses. However, targeting rules reported in one study often fail to be reproduced in other studies and therefore the general rules for functional miRNA targeting remain elusive. In this review, we evaluate previously-reported miRNA targeting rules and discuss the biological impact of the functional miRNAs on gene-regulatory networks as well as the future direction of miRNA targeting research.