• Title/Summary/Keyword: Micro-Injection Molding

Search Result 179, Processing Time 0.024 seconds

Study on the gate cutting of light guiding plate for mobile using quenching element (박형 도광판의 음각, 양각 마이크로 패턴 성형성에 관한 연구)

  • Hwang, Chul-Jin;Kim, Jong-Sun;Min, In-Gi;Kim, Jong-Dug;Yoon, Kyung-Hwan
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.1-4
    • /
    • 2008
  • LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of kernel parts of LCD unit and it consists of several optical sheets(such as prism, diffuser and protector sheets), LCP (Light Guide Plate), light source (CCFL or LED) and mold frame. The LGP of LCD-BLU is usually manufactured by forming numerous dots with $50-200{\mu}m$ in diameter on it by erosion method. But the surface of the erosion dots of LGP is very rough due to the characteristics of the erosion process during the mold fabrication, so that its light loss is high along with the dispersion of light into the surface. Accordingly, there is a limit in raising the luminance of LCD-BLU. Especially, the negative and positive micro-lens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP.

  • PDF

A Study on the Fabrication Method of Mold for 7 inch LCD-BLU by continuous microlens 200μm (연속마이크로렌즈 200μm 적용 7인치 LCD-BLU 금형개발)

  • Kim, J.S.;Ko, Y.B.;Min, I.K.;Yu, J.W.;Heo, Y.M.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.42-47
    • /
    • 2007
  • LCD-BLU is one of kernel parts of LCD and it consists of several optical sheets: LGP, light source and mold frame. The LGP of LCD-BLU is usually manufactured by etching process and forming numerous dots with $50\sim300{\mu}m$ diameter on the surface. But the surface of the etched dots of LGP is very rough due to the characteristics of the etching process during the mold fabrication, so that its light loss is high along with the dispersion of light into the surface. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current etched dot patterned LGP, optical pattern with continuous microlens was designed using optical simulation CAE. Also, a mold with continuous micro-lens was fabricated by UV-LiGA reflow process and applied to 7 inch size of navigator LCD-BLU in the present study.

A Study on the Fabrication Method of Mold for 2 inch LCD-BLU by 50μm Microlens : Effect of Different Aspect Ratio (50μm급 마이크로렌즈 적용 2인치 휴대폰 LCD-BLU 금형 개발 : 광학패턴의 세장비 영향)

  • Kim, J.S.;Ko, Y.B.;Min, I.K.;Yu, J.W.;Heo, Y.M.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.48-53
    • /
    • 2007
  • LCD-BLU(Liquid Crystal Display - Back Light Unit) consists of several optical sheets: LGP(Light Guiding Plate), light source and mold frame. The LGP of LCD-BLU is usually manufactured by etching process and forming numerous dots with $50{\mu}m$ in diameter on the surface. But the surface roughness of LGP with etched dots is very high, so there is much loss of light. In order to overcome the limit of current etched dot patterned LGP, optical pattern design with microlens of $50{\mu}m$ diameter was applied in the present study. The microlens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP and optical simulation was carried out to know tendency of microlens patterned LGP simultaneously. The attention was paid to the effects of different aspect ratio(i.e. $0.2\sim0.5$) of optical pattern conditions to the brightness distribution of BLU with microlens patterned LGP. Finally, high aspect ratio microlens patterned LGP showed superior results to the one made by low aspect ratio in average luminance.

Design and fabrication of wafer scale microlens array for image sensor using UV-imprinting (UV 임프린팅을 이용한 이미지 센서용 웨이퍼 스케일 마이크로렌즈 어레이 설계 및 제작)

  • Kim, Ho-Kwan;Kim, Seok-Min;Lim, Ji-Seok;Kang, Shin-Ill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.100-103
    • /
    • 2007
  • A microlens array has been required to improve light conversion efficiency in image sensors. A microlens array can be usually fabricated by photoresist reflow, hot-embossing, micro injection molding, and UV-imprinting. Among these processes, a UV-imprinting, which is operated at room temperature with relatively low applied pressure, can be a desirable process to integrate microlens array on image sensors, because this process provides the components with low thermal expansion, enhanced stability, and low birefringence, furthermore, it is more suitable for mass production of high quality microlens array. In this study, to analyze the optical properties of the wafer scale microlens array integrated image sensor, another wafer scale simulated image sensor chip array was designed and fabricated. An aspherical square microlens was designed and integrated on a simulated image sensor chip array using a UV-imprinting process. Finally, the optical performances were measured and analyzed.

  • PDF

Precision Grinding System for Micro Core-pin (마이크로 코어 핀 정밀 연삭 시스템)

  • Yang, Ji-Kyung;Lee, In-Cheol;Kang, Dong-Seong;Han, Bong-Seok;Han, Yu-Jin;Lee, Jung-Woo;Song, Ki-Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.50-57
    • /
    • 2017
  • In the injection molding process, a core that builds a space for a product is installed at the internal place in the mold and fabricated as the frame of the mold. In this make up, the fabricating partial form of the mold at a pin is a core pin. The core pin is finer because an injection mold produces miniaturization and integration. On the other hand, when the core is manufactured using the existing centerless grinder, it generates vibrations because of the lack of a fixed zig for a micro size workpiece. For this reason, an existing centerless grinder without a micron size fixed zig, makes a defective product due to vibration and deformation. In this study, a compact grinding system that can be installed using an existing centerless grinder was fabricated to make a micro size core pin. Using the compact grinding system, grinding experiment for core pin was carried out. The performance of the system was confirmed by measuring the surface roughness, roundness, and cylindricity.

A fiber optic surface plasmon resonance (SPR) sensorusing cyclic olefin copolymer (COC) polymer prism (Cyclic olefin copolymer (COC) 폴리머 프리즘을 사용한 광섬유 기반 표면 플라즈몬 공명 (SPR) 바이오 센서)

  • Yun, Sung-Sik;Lee, Soo-Hyun;Ahn, Chong-H.;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.369-374
    • /
    • 2008
  • A novel fiber optic surface plasmon resonance (SPR) sensor using cyclic olefin copolymer (COC) prism with the spectral modulation is presented. The SPR sensor chip is fabricated using the SU-8 photolithography, Ni-electroplating and COC injection molding process. The sidewall of the COC prism is partially deposited with Au/Cr (45/2.nm thickness) by e-beam evaporator, and the thermal bonding process is conducted for micro fluidic channels and optical fibers alignment. The SPR spectrum for a phosphate buffered saline (0.1.M PBS, pH.7.2) solution shows a distinctive dip at 1300.nm wavelength, which shifts toward longer wavelength with respect to the bovine serum albumin (BSA)concentrations. The sensitivity of the wavelength shift is $1.16\;nm{\cdot}{\mu}g^{-1}{\cdot}{\mu}l^{-1}$. From the wavelength of SPR dips, the refractive indices (RI) of the BSA solutions can be theoretically calculated using Kretchmann configuration, and the change rate of the RI was found to be $2.3{\times}10^{-5}RI{\cdot}{\mu}g^{-1}{\cdot}l^{-1}$. The realized fiber optic SPR sensor with a COC prism has clearly shown the feasibility of a new disposable, low cost and miniaturized SPR biosensor for biochemical molecular analyses.

The excimer laser ablation of PET for micro-mold insert - The control of cross sectional shape using Fourier optics - (마이크로 금형 제작을 위한 PET의 엑시머 레이저 어블레이션 - 퓨리에 광학을 이용한 가공 단면 형상의 제어 -)

  • Shin, Dong-Sik;Lee, Je-Hoon;Seo, Jung;Kim, Do-Hoon
    • Laser Solutions
    • /
    • v.6 no.3
    • /
    • pp.19-28
    • /
    • 2003
  • The manufacturing process for the microfluidic device can include sequential steps such as master fabrication, electroforming, and injection molding. The laser ablation, using masks, has been applied to the fabrication of channels in microfluidic devices. In this research, an excimer laser was used to engrave microscopic channels on the surface of PET (polyethylene terephthalate), which shows a high absorption ratio for an excimer laser beam with a wavelength of 248 m. When 50-${\mu}{\textrm}{m}$-wide rectangular microscopic channels are ablated with a 500 ${\times}$ 500 ${\mu}{\textrm}{m}$ square mask at a magnification ratio of 1/10, ditch-shaped defects were found in both corners. The measurement of laser beam intensity showed that a coherent image in the PET target caused such defects. Analysis based on the Fourier diffraction theory enabled the prediction of the coherent shape at the image surface as well as the diffraction beam shape between the mask and the image surface. It also showed that the diameter of the aperture had a dominant effect. The application of aperture with a diameter of less than 3 mm helped to eliminate such defects in the ablated rectangular microscopic channels on PET without such ditch-shaped defects.

  • PDF

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF

Stress Distribution in Microvascular Anastomotic Coupler (AnaFix®) Micropins with Respect to the Fillet Radius (필렛효과에 따른 미세혈관 문합커플러(AnaFix®) 마이크로핀의 응력분포)

  • Jee, Dae-Won;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1139-1145
    • /
    • 2011
  • An automated anastomotic ring-pin system consisting of both the anastomotic ring-pin system and the coupler device has eliminated the drawbacks of the suture method. High density polyethylene (HDPE), a material with outstanding biocompatibility and injection molding capability, was used in the ring. SUS316 stainless steel, Ti-6Al-4Nb, Ti-6Al-4V, and unalloyed titanium were used in FEM simulations of the micropin. The authors categorized the microvascular anastomotic ring micropins into short neck (SN) and long neck (LN) groups in order to evaluate the effect of the micropin's fillet radius and neck length on the von Mises stress. The micropins were further divided into those with and without fillet. On the basis of the fillet radius rate (FRR), which represents the rate of change in the von Mises stress with respect to the availability and shape of the fillet, and the neck length rate (NLR), which represents the rate of change in the von Mises stress with respect to changes in the length of the neck within the fillet shape, it can be concluded that the SN-3 neck design is the most stable.