• 제목/요약/키워드: Micro-Injection

Search Result 451, Processing Time 0.026 seconds

Development of Nano Mold and Injection molder for Nano system (나노 시스템 사출을 위한 차세대 전동식 사출기 개발 및 이를 위한 나노 몰드 개발)

  • 황교일;류경주;김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.189-192
    • /
    • 2002
  • Recently, micro-nano system is fabricated by photolithograph method. This method can not have mass production, so this method wastes time and human effort. accordingly, the aim of this paper is to research on injection molding of micro-nano system. For injection molding process, development of micro-nano mold is required. Mold for injection mold process is maintained its shape in high pressure and temperature. So in this paper, we studied the simulation of mold fur injection molding and then we consider a result of injection molding simulation.

  • PDF

Influence of Micro-Pattern Replication Ratio of Injection-Molded Light Guide Plate on Optical Aspect of LCD (도광판의 미세 패턴 사출 전사성이 LCD 광특성에 미치는 영향에 관한 해석적 연구)

  • Hong, J.P.;Joo, B.Y.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.126-130
    • /
    • 2012
  • Accurate optical texturing of light guide plate over the entire surface area is an important technical issue in LCD TV industry. Injection molding process has the potential to produce large light guide plates having highly efficient optical textures such as micro-prism array. This study is focused on the effect of the degree of replication of the micro texture of the 40" injection molded light guide plates on the overall optical performance of the display panel. Measured replication ratios of the micro-textures formed with three different types of injection molding process were considered in the modeling of prismatic micro segment array. Optical simulation was conducted and results were discussed.

Development of Micro mold with Electroplating Ni for Injection molding (사출 성형을 위한 니켈 도금을 수행한 마이크로 몰드의 개발)

  • Hwang, Kyo-Il;Kim, Hun-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.138-145
    • /
    • 2006
  • An injection molding is necessary to mass-product for micro-nano system, so micro-nano mold must be developed for injection molding. The micro-nano mold has precision and strength to overcome a surround of injection. So in this paper, two methods were used. First, after etching the Al, Ni was electroplated in etched AI. The other, LIGA method was used. A temperature and thickness of Ni are important factors in these methods. So after fabrication, the simulation was processed to find optimal thickenss of Ni and temperature.

Injection Molding Characteristics of COC and PP in Micro Rib Structure (미세 리브 구조에서 COC 및 PP의 사출성형 특성)

  • Jung, W.C.;Heo, Y.M.;Shin, K.H.;Yoon, G.S.;Chang, S.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.158-163
    • /
    • 2006
  • The demand for the miniaturization and high-precision of machine part has recently increased in new technology like biotechnology(BT) and nanotechnology(NT). The purpose of this study is to analyze the molding characteristics according to injection conditions by measuring the filling height in micro injection molding of the polypropylene(PP) and cyclic olefin copolymer(COC). The result shows that the filling effect of COC is better than that of PP in micro rib structure with injection molding process.

Micro Metal Powder Injection Molding in the W-Cu System (W-Cu의 마이크로 금속분말사출성형)

  • 김순욱;양주환;박순섭;김영도;문인형
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.267-272
    • /
    • 2002
  • The production of micro components is one of the leading technologies in the fields of information and communiation, medical and biotechnology, and micro sensor and micro actuator system. Microfabrication (micromachining) techniques such as X-ray lithography, electroforming, micromolding and excimer laser ablation are used for the production of micro components out of silicon, polymer and a limited number of pure metals or binary alloys. However, since the first development of microfabrication technologies there have been demands for the cost-effective replication in large scale series as well as the extended range of available material. One such promising process is micro powder injection molding (PIM), which inherits the advantages of the conventional PIM technology, such as low production cost, shape complexity, applicability to many materials, applicability to many materials, and good tolerance. This paper reports on a fundamental investigation of the application of W-Cu powder to micro metal injection molding (MIM), especially in view of achieving a good filling and a safe removal of a micro mold conducted in the experiment. It is absolutely legitimate and meaningful, at the present state of the technique, to continue developing the micro MIM towards production processes for micro components.

Investigation of Micro Cutting Characteristics for Tungsten-Carbide Green Part (초경 그린파트 마이크로 절삭가공 특성 분석)

  • Kim, G.H.;Jung, W.C.;Yoon, G.S.;Heo, Y.M.;Kwon, Y.S.;Cho, M.W.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.191-196
    • /
    • 2010
  • Tungsten-carbide as typical difficult-to-cut material has excellent mechanical properties such as high thermal resistivity, mechanical strength and chemical durability. However, it is next to impossible for tungsten-carbide to be fabricated the needed parts by cutting process. In this study, for establishing the micro fabrication method of tungsten-carbide for micro injection or compression molding core, the investigation on micro cutting characteristics of tungsten-carbide green part which is made by powder injection molding process and easy to cut relatively was performed. For this, micro endmilling experiments of tungsten-carbide green part were performed according to various cutting conditions. Finally, the wear trend of micro endmill and the appearance of micro rib according to feed-rate and cutting depth per step were analyzed through SEM images of micro cutting feature and microscope images of micro tools.

Filling Behavior of Polymer Melt in Micro Injection Molding for V-Grooves Pattern (V-Groove 패턴을 위한 마이크로 사출성형의 폴리머 멜트 충전 거동)

  • Kim, Moo Sun;Kim, Seung Mo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.291-298
    • /
    • 2014
  • This study uses two numerical approaches to analyze the filling behavior of micro patterns on micro-injection molding for V-grooves pattern which cannot be simulated with conventional CAE packages. The parametric studies have been performed to examine the fidelity of micro patterns with respect to temperature, pressure, inlet velocity and pattern location on the mold according to the boundary condition from the macro pressure and velocity data which can be obtained by conventional CAE packages. Through these numerical approaches, the filling behavior of polymer melt in micro patterns can be understood, the quality of replication can be predicted, and the V-groove pattern can be shaped uniformly during the process of injection molding.

Investigation on micro/nano filling behavior in LGP injection molding (LGP 사출성형 시의 미세충전 특성해석)

  • Cho, K.C.;Shin, H.G.;Kim, H.Y.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.91-94
    • /
    • 2006
  • In this paper, in order to get micro or nano size optical patterns, an analytical and experimental investigation on a LGP (light guide plate) injection molding process has performed. The LGP, which diffusing and emitting the light from the CCFL or the LEDs to the panel front direction uniformly, typically has an under 1mm thick base substrate and numerous 60 to $170{\mu}m$ width and 6 to $10{\mu}m$ thick dot patterns on it. Generally, the small size LGPs, for mobile devices, have been and are being made of PMMA through the injection molding process. However, the substrate thickness and the dot pattern size are decreasing, it becomes hard to fill the micro to sub-micro cavities completely. To investigate the flow behavior of resin in micro/nano cavities and identify the characteristics of the LGP injection molding process, we carried out the flow analyses with respect to the variations of the substrate thickness, the dot pattern size and the pitch of a cavity.

  • PDF

Injection/compression molding for micro pattern (미세패턴 성형을 위한 사출 압축 성형 공정 기술)

  • Yoo Y.E.;Kim T.H.;Kim C.W.;Je T.J.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.100-104
    • /
    • 2005
  • The injection molding is very effective process for various plastic products due to its high productivity. It is also good fur precise products like optical parts. Various thermoplastic materials are also available with this injection molding process. In recent, however, as the overall size of the product increases and micro or nano scale of patterns are applied to the products, we now have some problems such as low fidelity of the replication of the pattern, high molding pressure, or warpage from the in-mold stress. Injection/compression molding is studied to overcome those problems in molding large thin plate with micro pattern array on its surface. An injection compression mold is designed to 3 pieces mold for side gate. We install 4 pressure transducers and 9 thermocouples to measure the melt pressure and surface temperature in the cavity during the process. As a result, the maximum molding pressure for injection compression molding is reduced to 1/3 compared to injection molding and the uniformity of the pressure in the cavity is enhanced by about 15%.

  • PDF

HALL EFFECTS ON HYDROMAGNETIC NATURAL CONVECTION FLOW IN A VERTICAL MICRO-POROUS-CHANNEL WITH INJECTION/SUCTION

  • BHASKAR, P.;VENKATESWARLU, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.103-119
    • /
    • 2020
  • In this work, the hydromagnetic and thermal characteristics of natural convection flow in a vertical parallel plate micro-porous-channel with suction/injection is analytically studied in the presence of Hall current by taking the temperature jump and the velocity slip at the wall into account. The governing equations, exhibiting the physics of the flow formation are displayed and the exact analytical solutions have been obtained for momentum and energy equations under relevant boundary conditions. The impact of distinct admissible parameters such as Hartmann number, Hall current parameter, permeability parameter, suction/injection parameter, fluid wall interaction parameter, Knudsen number and wall-ambient temperature ratio on the flow formation is discussed with the aid of line graphs. In particular, as rarefaction parameter on the micro-porous-channel surfaces increases, the fluid velocity increases and the volume flow rate decreases for injection/suction.