• Title/Summary/Keyword: Micro-Finite Element Analysis

Search Result 412, Processing Time 0.026 seconds

Thermal Analysis of Silicon Micro-Gas Sensor (실리콘 마이크로 가스센서의 열해석)

  • 정완영;엄구남
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.567-570
    • /
    • 2000
  • Thermal simulation of typical stack-type and newly proposed planar-type micro-gas sensors were studied by FEM method. the thermal analysis for the proposed planar structure including temperature distribution over the sensing layer and power consumption of the heater were carried using finite element method by computer simulation and well compared with those of typical stack-type micro-gas sensor. The thermal properties of the microsensor from thermal simulation were compared with those of an actual device to investigate the acceptability of the computer simulation.

  • PDF

A Microstructural Analysis for Preventive Treatments of Vertebral Fracture (척추 골절의 예방적 치료법에 관한 미세 구조해석)

  • 김형도;탁계래;김한성;이성재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.146-149
    • /
    • 2002
  • It is reported that the mechanical properties of vertebral trabecular bone depend on the density and the mass of bones. Osteoporosis is a systemic skeletal disease caused by low bone mass and microstructure deterioration of trabecular bone. Silva and Gibson (1997) studied the treatment of age-related bone loss using drug therapy. Vertebroplasty is a minimally invasive surgery for the treatment of osteoporosis vertebrae. This procedure includes puncturing vertebrae and filling with Polymethylmethacrylate (PMMA). However, the relative effect of drug therapy and bone cement for osteoporosis treatment is not reported yet. In this study, several 2D models of human vertebral trabecular bone are analyzed by finite element method. The mechanical behaviors of the vertebral trabecular bone treated by the drug therapy and the bone cement are compared. This study shows that bone cement treatment is more effective strategy than drug therapy to prevent the degradation of bone strength.

  • PDF

A Study on the Critical Depth of Cut in Ultra-precision Machining (초정밀 절삭에 있어서 임계절삭깊이에 대한 연구)

  • Kim, Kug-Weon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.126-133
    • /
    • 2002
  • The cutting thickness of ultra-precision machining is generally very small, only a few micrometer or even down to the order of a few nanometer. In such case, a basic understanding of the mechanism on the micro-machining process is is necessary to produce a high quality surface. When machining at very small depths of cut, metal flow near a rounded tool edge become important. In this paper a finite element analysis is presented to calculate the stagnation point on the tool edge or critical depth of cut below which no cutting occurs. From the simulation, the effects of the cutting speed on the critical depths of cut were calculated and discussed. Also the transition of the stagnation point according to the increase of the depths of cut was observed.

Design of Micro Actuator Using Finite Element Analysis (유한요소해석을 이용한 마이크로 액추에이터의 설계)

  • Lee, Yang-Chang;Lee, Joon-Seong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.634-637
    • /
    • 2010
  • 본 논문은 미세구조의 마이크로 액추에이터의 구동해석을 위한 결과로써 3차원 유한요소해석(Finite Element Analysis, FEA)을 이용하여 수행하였다. 마이크로머신과 같은 미소구조물을 해석하는 경우, 컴퓨터의 메인 프로세스에 비해 프리프로세서(pre-processor)의 비중이 높아지고 있어 그 효율화가 가장 중요하다. 수작업에 의존해야 했던 지난날의 요소분할법 기술은 최근에 들어 여러 연구자들에 의해 개발되고 있다. 특히, 복합현상을 다루는 정전 액추에이터에 직접적인 적용에 다소 어려움이 있는데 3차원적인 수치 및 실험평가는 실용적인 문제에서 비추어 볼 때 매우 중요하다. 따라서 본 논문에서는 센서로서의 역할을 하는 마이크로 정전 액추에이터의 기본설계를 위한 토대를 구축하고자 3차원적인 FEA 시뮬레이션을 수행하여 미세 회전운동을 분석하였다. 그 결과 설계된 모델에서 먼저 자중해석과 Mode 해석에서 기준치를 모두 만족하였다. 또한 설계된 액추에이터의 형상에 따른 회전자의 변형해석을 수행하여 시작토오크와 탄성한계까지의 위치제어에 필요한 회전각을 구하였으며, 정전장 해석을 통하여 시작토오크는 전압 $V^2$에 비례함을 알 수 있었다.

  • PDF

An Experimental Approach and Finite Element Analysis on Rectangular Cup Drawing Process of Milli-Component Forming (소형부품의 사각 컵 드로잉 성형 해석에 관한 실험적 연구)

  • 구태완;강범수
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.471-477
    • /
    • 2001
  • Milli-structure components are classified as a component group whose size is between macro and micro scales, that is, about smaller than 20mm and larger than 1mm. The forming of these components has a typical phenomenon of bulk deformation with thin sheets because of the forming size. In this study, milli-structure rectangular cup drawing is analyzed and measured using the finite element method and experiments. Special containers or cases of cellular phone vibrator to save installation space are produced by rectangular-shaped drawing. A systematic approach is established for the design and the experiment of the forming processes for rectangular milli-structure cases. To verify the simulation results, the experimental investigations were also carried out on a real industrial product. The numerical analysis by FEM shows good agreement with the experimental results in view of the deformation shape of the product.

  • PDF

A Comparative study on the solder joint fatigue under thermal and mechanical loading conditions (열하중과 굽힘 하중 조건에서의 솔더조인트 피로 특성 비교연구)

  • Kim, Il-Ho;Lee, Soon-Bok
    • Journal of Applied Reliability
    • /
    • v.7 no.2
    • /
    • pp.45-55
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. Firs, cyclic bending tests were performed using the micro-bending tester. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. Creep deformation was dominant in thermal fatigue and plastic deformation was main parameter for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF

Finite Element Analysis of the Behavior of Early-age Concrete (유한요소법에 의한 초기재령 콘크리트의 거동해석)

  • 송하원;조호진;박상순;변근주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.10-17
    • /
    • 2001
  • With the introduction of durability examination into design code of concrete structure, a prediction of early-age behavior of concrete and its cracking resistance becomes very important. But, the early-age behaviors such as hydration, micro-structure development, moisture transport and mechanical properties development is quite complicated and coupled each other, and thus those can not be solved independently. One way to analyze those is to model their behaviors analytically and solve those computationally within a unified framework. In this paper, we propose a finite element technique to predict the early-age behaviors of concrete within the unified framework. The technique is applied to evaluatio of cracking in a massive concrete structure and then the analysis results are discussed.

  • PDF

Characteristic Analysis of Spiral Type Thin-Film Inductor Using Finite Element Method (유한요소법을 이용한 스파이럴 박막인덕터의 특성해석)

  • Ha, Gyeong-Ho;Hong, Jeong-Pyo;Song, Jae-Seong;Min, Bok-Gi;Kim, Hyeon-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.617-624
    • /
    • 1999
  • The spiral type thin-film inductor performed in high frequency at 2-5[MHz] range is analyzed by 2-dimensional Finite Element Method(2D FEM). The features of micro thin-film inductor have complicated electromagnetic phenomenon such as skin effect, proximity effect and magnetic saturation. To develope miniatured magnetic device considering these features, it is important to predict the property of the thin film inductor according to design parameter. In this paper, we present the 2D FEM analysis for the spiral type thin film inductor. The characteristics of inductor from point of view of inductance, resistance and quality factor are studied according to design parameter and various pattern construction.

  • PDF

Design of a Magnetostrictive MicroActuator (자기변형 마이크로 작동기의 설계)

  • 김도연;박영우;임민철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.174-181
    • /
    • 2004
  • This paper presents the development of a magnetostrictive microactuator. The structural and functional requirements are as follows: it must be a millimeter structure and must achieve controllable displacement with nanometer resolution. Finite Element Analysis(FEA) is used to determine the structure with the most uniform and highest magnetic flux density along the Terfenol-D rod. The microactuator prototype 1 is designed and made based on the FEA. It is observed that the microactuator show some level of hysteresis and that it produces 25 newton in force and 3 ${\mu}{\textrm}{m}$ in displacement with 1.5 amperes of current, and resolution of 250 nm per 0.1 amperes. To improve the performance of the microactuator prototype 1, microactuator prototype 2 is made again with a permanent magnet (PM). It is observed that the microactuator prototype 2 gene.ates 3.3 ${\mu}{\textrm}{m}$ in displacement with 0.9 amperes of current. It means that the microactuator prototype 2 performs better than the microactuator prototype 1.

Absolute effective elastic constants of composite materials

  • Bulut, Osman;Kadioglu, Necla;Ataoglu, Senol
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.897-920
    • /
    • 2016
  • The objective is to determine the mechanical properties of the composites formed in two types, theoretically. The first composite includes micro-particles in a matrix while the second involves long, thin fibers. A fictitious, homogeneous, linear-elastic and isotropic single material named as effective material is considered during calculation which is based on the equality of the strain energies of the composite and effective material under the same loading conditions. The procedure is carried out with volume integrals considering a unique strain energy in a body. Particularly, the effective elastic shear modulus has been calculated exactly for small-particle composites by the same procedure in order to determine of bulk modulus thereof. Additionally, the transverse shear modulus of fiber reinforced composites has been obtained through a simple approach leading to the practical equation. The results have been compared not only with the outcomes in the literature obtained by different method but also with those of finite element analysis performed in this study.