• Title/Summary/Keyword: Micro-FE models

Search Result 27, Processing Time 0.025 seconds

Design Evaluation of WEDM Based on Deformation Analyses and Axiomatic Design (변형해석 및 공리적 설계에 의한 와이어 방전가공기의 설계평가)

  • Lee, Hyeong-Il;U, Sang-U;Kim, Ju-Won;Kim, Chung-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.851-863
    • /
    • 2002
  • Recent industrial requirements for highly precise shape processing have brought the electric discharge machining (EDM) in great need. High precision in EDM is primarily achieved by high performance controllers. However there exists inherent precision loss due to structural micro-deformation. On this background, we study structural deformation characteristics of wire cut EDM via finite element (FE) analysis and axiomatic design. Two different wire cut EDMs are selected as analysis models. 3D CAD package I-Deas is first used to construct FE models of wire cut EDMs, and then ABAQUS FE code is used for following structural analysis. Pertinency of FE mesh refinement is discussed in terms of η -factor. It is shown that performance accuracy of EDM depends strongly on the structural characteristics. Some design enhancements are suggested in an axiomatic design point of view. Finally we provide weight and temperature induced displacement discrepancies between wire end points as position functions of each subframe.

Effects of trabecular bone microstructure on stress distribution within premolar tooth and implant (망상골의 구조와 밀도가 치과용 임플란트와 하악골에 미치는 영향)

  • Chon Chang Soo;Lee Sang Up;Lee Kyoung Joung;Kim Han Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.210-217
    • /
    • 2005
  • This study examined the effect of cancellous bone microstructure on stress distribution within a premolar tooth and a dental implant against mastication force by the micro-finite element method (FEM). The mandibular specimen including a premolar was obtained from a cadaver and scanned with micro-CT to obtain CT images. FE models were reconstructed from CT images at mid-sagittal plane of the tooth. Six models were generated and analyzed for different structure and density in cancellous bone. Stress distributions fur each implant (or tooth) and the surrounding bone were compared. The study indicated that the microstructure of cancellous bone should be considered in finite element analysis to produce reasonable results and thus implant systems with high success rate.

Estimation on a Contact Size Effect in Fretting Fatigue Between Cylindrical Pad and Flat Specimen (실린더형 패드와 평판 시험편간 프레팅 피로의 접촉폭 크기효과에 관한 평가)

  • Kim, Jin-Kwang;Cho, Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.116-125
    • /
    • 2008
  • In general, fretting is a contact damage process due to micro-slip associated with small amplitude oscillatory movement between two surfaces in contact. Previous studies in fretting fatigue have observed a contact size effect related to contact width. The volume-averaging method of theoretically predicted contact stress fields was required to emulate experimental trends and to predict the observed contact size effects. This contact size effect is captured by the mean values of stresses and strains at the element integration points of FE model and two critical plane models (SWT, FS) in the present paper. It is shown that crack nucleation and fretting fatigue life can be predicted by the FE-based critical plane models.

Modelling reinforced concrete beams under mixed shear-tension failure with different continuous FE approaches

  • Marzec, Ireneusz;Skarzynski, Lukasz;Bobinski, Jerzy;Tejchman, Jacek
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.585-612
    • /
    • 2013
  • The paper presents quasi-static numerical simulations of the behaviour of short reinforced concrete beams without shear reinforcement under mixed shear-tension failure using the FEM and four various constitutive continuum models for concrete. First, an isotropic elasto-plastic model with a Drucker-Prager criterion defined in compression and with a Rankine criterion defined in tension was used. Next, an anisotropic smeared crack and isotropic damage model were applied. Finally, an elasto-plastic-damage model was used. To ensure mesh-independent FE results, to describe strain localization in concrete and to capture a deterministic size effect, all models were enhanced in a softening regime by a characteristic length of micro-structure by means of a non-local theory. Bond-slip between concrete and reinforcement was considered. The numerical results were directly compared with the corresponding laboratory tests performed by Walraven and Lehwalter (1994). The advantages and disadvantages of enhanced models to model the reinforced concrete behaviour were outlined.

Development of RVE Reconstruction Algorithm for SMC Multiscale Modeling (SMC 복합재료 멀티스케일 모델링을 위한 RVE 재구성 알고리즘 개발)

  • Lim, Hyoung Jun;Choi, Ho-Il;Yoon, Sang Jae;Lim, Sang Won;Choi, Chi Hoon;Yun, Gun Jin
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.70-75
    • /
    • 2021
  • This paper presents a novel algorithm to reconstruct meso-scale representative volume elements (RVE), referring to experimentally observed features of Sheet Molding Compound (SMC) composites. Predicting anisotropic mechanical properties of SMC composites is challenging in the multiscale virtual test using finite element (FE) models. To this end, an SMC RVE modeler consisting of a series of image processing techniques, the novel reconstruction algorithm, and a FE mesh generator for the SMC composites are developed. First, micro-CT image processing is conducted to estimate probabilistic distributions of two critical features, such as fiber chip orientation and distribution that are highly related to mechanical performance. Second, a reconstruction algorithm for 3D fiber chip packing is developed in consideration of the overlapping effect between fiber chips. Third, the macro-scale behavior of the SMC is predicted by the multiscale analysis.

The relation between shape and interfacial stress of dental implants (치과용 임플란트의 형상과 계면 응력의 상관관계)

  • Kim, H. S.;Lee, S. U.;Cho, N. H.;Ko, J. Y.;Park, S. S.;lee, H.;Ahn, S.;Shim, J. S.;Lee, C. Y.;Moon, H. S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.128-131
    • /
    • 2002
  • Several FE models were developed based on micro-CT images of a mandibular specimen. A new dental implant model was suggested from parameter study for the relation between shape and interfacial stress of dental implants. It is found that the proposed model is highly beneficial.

  • PDF

Multiscale Finite Element Analysis of Needle-Punched C/SiC Composites through Subcell Modeling (서브셀 모델링을 통한 니들 펀치 C/SiC 복합재료의 멀티스케일 유한요소해석)

  • Lim, Hyoung Jun;Choi, Ho-Il;Lee, Min-Jung;Yun, Gun Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • In this paper, a multi-scale finite element (FE) modeling methodology for three-dimensional (3D) needle-punched (NP) C/SiC with a complex microstructure is presented. The variations of the material properties induced by the needle-punching process and complex geometrical features could pose challenges when estimating the material behavior. For considering these features of composites, a 3D microscopic FE approach is introduced based on micro-CT technology to produce a 3D high fidelity FE model. The image processing techniques of micro-CT are utilized to generate discrete-gray images and reconstruct the high fidelity model. Furthermore, a subcell modeling technique is developed for the 3D NP C/SiC based on the high fidelity FE model to expand to the macro-scale structural problem. A numerical homogenization approach under periodic boundary conditions (PBCs) is employed to estimate the equivalent behavior of the high fidelity model and effective properties of subcell components, considering geometry continuity effects. For verification, proposed models compare excellently with experimental results for the mechanical behavior of tensile, shear, and bending under static loading conditions.

Continuum Based Plasticity Models for Cubic Symmetry Lattice Materials Under Multi-Surface Loading (다중면 하중하에 정방향 대층구조를 가진 격자재료의 연속적인 소성모델)

  • Seon, Woo-Hyun;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.1-11
    • /
    • 2011
  • The typical truss-lattice material successively packed by repeated cubic symmetric unit cells consists of sub-elements (SE) proposed in this study. The representative continuum model for this truss-lattice material such as the effective strain and stress relationship can be formulated by the homogenization procedure based on the notation of averaged mechanical properties. The volume fractions of micro-scale struts have a significant influence on the effective strength as well as the relative density in the lattice plate with replicable unit cell structures. Most of the strength contribution in the lattice material is induced by axial stiffness under uniform stretching or compression responses. Therefore, continuum based constitutive models composed of homogenized member stiffness include these mechanical characteristics with respect to strength, internal stress state, material density based on the volume fraction and even failure modes. It can be also recognized that the stress state of micro-scale struts is directly associated with the continuum constitutive model. The plastic flow at the micro-scale stress can extend the envelope of the analytical stress function on the surface of macro-scale stress derived from homogenized constitutive equations. The main focus of this study is to investigate the basic topology of unit cell structures with the cubic symmetric system and to formulate the plastic models to predict pressure dependent macro-scale stress surface functions.

Deflection Analysis of Laminated Composite Cylindrical Shell Structures Based on Micro-Mechanics (마이크로 역학기반 GFRP 원통형 적층 쉘 구조의 변위 해석)

  • Kim, Gyu-Dong;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.15-21
    • /
    • 2013
  • This study carried out finite element deflection analysis of cylindrical shell structures made of composite materials, which is based on the micro-mechanical approach for different fiber-volume fractions. The finite element (FE) models for composite structures using multi-scale approaches described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the effect of the material combination. New results reported in this paper are focused on the significant effects of the fiber-volume fraction for various parameters, such as fiber angles, layup sequences, and length-thickness ratios. It may be concluded from this study that the combination effect of fiber and matrix, largely governing the dynamic characteristics of composite shell structures, should not be neglected and thus the optimal combination could be used to design such civil structures for better dynamic performance.

Simulations of spacing of localized zones in reinforced concrete beams using elasto-plasticity and damage mechanics with non-local softening

  • Marzec, I.;Bobinski, J.;Tejchman, J
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.377-402
    • /
    • 2007
  • The paper presents quasi-static plane strain FE-simulations of strain localization in reinforced concrete beams without stirrups. The material was modeled with two different isotropic continuum crack models: an elasto-plastic and a damage one. In case of elasto-plasticity, linear Drucker-Prager criterion with a non-associated flow rule was defined in the compressive regime and a Rankine criterion with an associated flow rule was adopted in the tensile regime. In the case of a damage model, the degradation of the material due to micro-cracking was described with a single scalar damage parameter. To ensure the mesh-independence and to capture size effects, both criteria were enhanced in a softening regime by nonlocal terms. Thus, a characteristic length of micro-structure was included. The effect of a characteristic length, reinforcement ratio, bond-slip stiffness, fracture energy and beam size on strain localization was investigated. The numerical results with reinforced concrete beams were quantitatively compared with corresponding laboratory tests by Walraven (1978).