• 제목/요약/키워드: Micro-FE model

Search Result 63, Processing Time 0.037 seconds

The elastic and plastic behaviour of the micro-FE models for vertebral trabecular bones (척추 해면골에 대한 미세 유한요소모델의 탄성 및 소성특성에 관한 연구)

  • 우대곤;김한성;원예연;백명현;탁계래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1320-1323
    • /
    • 2003
  • In this study, the micro-FE analyses were carried out for the plastic behaviour of vertebral trabecular bones. Many researchers have investigated the elastic behaviour of trabecular bones by using the micro-finite element models based on the micro-CT images. However, there was no micro-FE model to account for the plastic behaviour of trabecular bones. Ulrich et at. reported that best results at coarser model were obtained when using 'compensated hexahedron models' with the same relative density. This study indicates that, for the elastic and plastic analysis, 'the compensated hexahedron FE model' is likely to be limited to about 63$\mu\textrm{m}$ image resolution in the vertebra trabecular bones.

  • PDF

Automated FEA Simulation of Micro Motor (마이크로 모터의 자동화된 FEA 시뮬레이션)

  • Lee Joon-Seong
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2002
  • This paper describes an automated evaluation of electrostatic field for micro motors whose sizes range 10 to 103um. Electric field modeling in micro motors has been generally restricted to in-plane two-dimensional finite element analysis (FEA). In this paper, the actual three-dimensional geometry of the micro motor is considered. An automatic FE mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated in the system, together with one of commercial FE analysis codes and one of commercial solid modelers. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena to be analyzed, electrostatic analysis and stress analysis and so on. The FE models are then exported to the FE analysis code, and then analyses are peformed. Then, analytical analysis and FE analysis about the torque generated by electrostatic micro motor are performed. The starting torque is proportional to $V^2$, the calculated starting torque from the two-dimensional analytical solutions are three times larger than those from the three-dimensional FE solutions.

  • PDF

Multi-scale modelling of the blood chamber of a left ventricular assist device

  • Kopernik, Magdalena;Milenin, Andrzej
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.23-40
    • /
    • 2014
  • This paper examines the blood chamber of a left ventricular assist device (LVAD) under static loading conditions and standard operating temperatures. The LVAD's walls are made of a temperature-sensitive polymer (ChronoFlex C 55D) and are covered with a titanium nitride (TiN) nano-coating (deposited by laser ablation) to improve their haemocompatibility. A loss of cohesion may be observed near the coating-substrate boundary. Therefore, a micro-scale stress-strain analysis of the multilayered blood chamber was conducted with FE (finite element) code. The multi-scale model included a macro-model of the LVAD's blood chamber and a micro-model of the TiN coating. The theories of non-linear elasticity and elasto-plasticity were applied. The formulated problems were solved with a finite element method. The micro-scale problem was solved for a representative volume element (RVE). This micro-model accounted for the residual stress, a material model of the TiN coating, the stress results under loading pressures, the thickness of the TiN coating and the wave parameters of the TiN surface. The numerical results (displacements and strains) were experimentally validated using digital image correlation (DIC) during static blood pressure deformations. The maximum strain and stress were determined at static pressure steps in a macro-scale FE simulation. The strain and stress were also computed at the same loading conditions in a micro-scale FE simulation.

Experimental and Numerical Study on the Viscoelastic Property of Polycarbonate near Glass Transition Temperature for Micro Thermal Imprint Process (열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링)

  • Lan, Shuhuai;Lee, Hey-Jin;Lee, Hyoung-Wook;Song, Jung-Han;Lee, Soo-Hun;Ni, Jun;Lee, Moon-G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.70-73
    • /
    • 2009
  • The aim of this research is to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature. An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model from the test data. Further validation of the model and parameters was performed by comparing the analysis of FE model results to the experimental data.

  • PDF

Finite Element Ductile Failure Simulations of Tensile and Bend Bars made of API X65 Steels (API X65 강의 인장 및 굽힘 시편에 대한 유한요소 연성파괴 해석)

  • Oh, Chang-Kyun;Jin, Te-Eun;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1696-1701
    • /
    • 2007
  • This paper presents a micro-mechanical model of ductile fracture for the API X65 steel using the Gurson-Tvergaard-Needleman (GTN) model. Experimental tests and FE damage simulations using the GTN model are performed for smooth and notched tensile bars, from which the parameters in the GTN model are calibrated. As application, the developed GTN model is applied to simulate small-sized, single-edge-cracked tensile and bend bars, via three-dimensional FE damage analyses. Comparison of FE damage analysis results with experimental test data shows overall good agreements.

  • PDF

Automated CAE Evaluation of Electrostatic Micro Actuator (정전 마이크로 액츄에이터의 자동 CAE 평가)

  • Lee, Joon-Seong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.711-715
    • /
    • 1996
  • This paper describes an automated computer-aided engineering (CAE) system for micromachines whose size range 10 to 10$^3$${\mu}{\textrm}{m}$. An automatic finite element mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated into the system, together with one of commercial finite clement (FE) analysis codes, MARC, and one of commercial solid modelers, Designbase. The system allows a geometry model of concern to be a automatically converted to different FE models, depending on physical phenomena to be analyzed, i.e. electrostatic analysis, stress analysis, modal analysis and so on. The FE analysis models are then exported to the FE analysis code, and then analyses are performed. This system is successfully applied to an electrostatic micro actuator.

  • PDF

The Mechanical Characteristics of Osteoporotic Vertebral Trabecular Bone Models and its Hormone Treatment Models using 3D Micro-FE Analysis (3 차원 미세 유한요소모델을 이용한 골다공증 해면골과 호르몬 치료 모델의 기계적 특성 분석)

  • 우대곤;김한성;유용석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1278-1281
    • /
    • 2004
  • Several workers reported the relationship between osteoporosis and age-related reductions in the BV/TV (bone volume fraction) of vertebral trabecular bones. However, there were few micro finite element (micro-FE) models to account for the treatments of the osteoporotic trabecular bone. In the present study, micro-FE models of osteoporotic and hormone-treated bone models were constructed to analyze the effect of specimen location and boundary condition on mechanical characteristics of hormone treatment model for osteoporotic trabecular bone. Top and bottom sections of specimens were also investigated individually to study the effect of specimen location. Hormone-treated models were allowed to have the same relative BV/TV (13.4%) as that used in models of previous researchers. The present study reported the elastic and plastic characteristics of the osteoporosis and hormone-treated bone models. In the present study, in-situ boundary condition was applied to the simulated compression tests for in-vivo condition of vertebral trabecular bone. The present study indicated that the hormone therapy was likely to improve the mechanical characteristics of osteoporotic bones and the mechanical characteristics of vertebral trabecular bone specimen were dependent on the captured location and boundary condition.

  • PDF

Micro-mechanical FE Analysis of Dual-phase Steels (미세조직이 고려된 이상 조직강의 유한 요소 해석)

  • Ha, J.;Lee, J.W.;Kim, J.H.;Barlat, F.;Lee, M.G.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.194-198
    • /
    • 2015
  • Microstructure based FE simulations were conducted to investigate the micro-mechanical properties of ferrite-martensite dual-phase steels. The FE model was built based on real microstructure images which were characterized by optical microscopy through the thickness direction. Serial sectioned 2D images were converted into semi-2D representative volume elements (RVEs) model. Each RVE model was subjected to a non-proportional loading condition and the mechanical response was analyzed on both the macroscopic and microscopic levels. Macroscopically, stress-strain curves were described under tension-compression and tension-orthogonal tension conditions and the Bauschinger effect was well captured for both loading paths. In addition, micromechanical properties were investigated in the view of stress-strain partitioning and strain localization during monotonic tension.

Numerical Investigation of Micro Thermal Imprint Process of Glassy Polymer near the Glass Transition Temperature (열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링과 해석)

  • Lan, Shuhuai;Lee, Soo-Hun;Lee, Hye-Jin;Song, Jung-Han;Sung, Yeon-Wook;Kim, Moo-Jong;Lee, Moon-G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.45-52
    • /
    • 2009
  • The research on miniature devices based on non-silicon materials, in particular polymeric materials has been attracting more and more attention in the research field of the micro/nano fabrication in recent years. Lost of applications and many literatures have been reported. However, the study on the micro thermal imprint process of glassy polymer is still not systematic and inadequate. The aim of this research I to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature (Tg). An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model form the test data. As a result, the feasibility of the established viscoelastic model for PC near Tg was confirmed and this material model can be used in FE analysis for the prediction and improvement of the micro thermal imprint process for pattern replication.

  • PDF

Automated Simulation System for Micromachines (마이크로머쉰의 자동 시뮬레이션 시스템)

  • Lee, Jun Seong
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.1
    • /
    • pp.29-29
    • /
    • 1996
  • This paper describes a new automated simulation system for micromachines whose size range $10^{-6}$ to $10^{-3}$ m. An automic finite element (FE) mesh generation technique, which is bases on the fuzzy knowledge processing and computation al geometry technique, is incorporated into the system, together with one of commerical FE analysis codes, MARC, and one of commerical solid modelers, Designbase. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena of micromachines to be analyzed, i,e. electrostatic analysis, stress analysis, modal analysis and so on. The FE models are then automatically analyzed using the FE analysis code. Among a whole process of analysis, the definition of a geometry model, the designation of local node patterns and the assignment of material properties and boundary conditions onto the geometry model are only the interactive process to be done by a user. The interactive operations can be processed in a few minutes. The other processes which are time consuming and labour-intensive in conventional CAE systems are fully automatically performed in a popular engineering workstation environment. This automated simulation system is successfully applied to evaluate an electrostatic micro wobble actuator.