• Title/Summary/Keyword: Micro-Cooler

Search Result 34, Processing Time 0.027 seconds

Transient Heat Transfer Analysis on the Evaporator of a Micro-Cooler prior to Roiling (마이크로 쿨러 증발기의 비등 전 과도열전달 해석)

  • Park, Byeong-Gyu;Kim, Geun-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.211-218
    • /
    • 2002
  • It has been investigated for the temperature profile in a planar evaporator of micro-cooler subject to a uniform heat flux prior to tole initiation of boiling. The results of the analysis allow for the determination of applied power levels fur which nucleation is likely to occur only within the vapor grooves of the evaporator while maintaining subcooling in the liquid core, thereby increasing the likelihood of a successful startup. Also, limits are fecund for which additional increases in the applied heat flux do not increase the temperature difference between the vapor grooves and the wick-liquid core interface. This analysis is appropriate for the microscale evaporators of micro-cooler during a fully-flooded startup as well as starter pump designs and micro-CPLs(capillary pumped loops). The results are useful in the initial basic design of microscale heat transfer devices.

Numerical Feasibility Study for a Spaceborne Cooler Dual-function Energy Harvesting System

  • Kwon, Seong-Cheol;Oh, Hyun-Ung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.579-587
    • /
    • 2017
  • Spaceborne cryocoolers produce undesirable micro-vibration disturbances during their on-orbit operation, which are a primary source of image-quality degradation for high-resolution observation satellites. Therefore, to comply with the strict mission requirement of high-quality image acquisition, micro-vibration disturbances induced by cooler operation have always been subjected to an isolation objective. However, in this study, we focused on the applicability of energy harvesting technology to generate electrical energy from micro-vibration energy of the cooler and investigated the feasibility of utilizing harvested energy as a power source to operate low-power-consumption devices such as micro-electromechanical system (MEMS) devices. A tuned mass damper (TMD)-type electromagnetic energy harvester combined with a conventional passive vibration isolator was proposed to achieve this objective. The system performs the dual functions of electrical energy generation and micro-vibration isolation. The effectiveness of the strategy was evaluated through numerical simulations.

Effect of the Thermoelectric Element Thickness on the Thermal Performance of the Thermoelectric Micro-Cooler (마이크로 열전냉각기의 열성능에 대한 열전소자 두께의 영향)

  • Lee Kong-Hoon;Kim Ook-Joong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.211-217
    • /
    • 2006
  • The three-dimensional numerical analysis has been carried out to figure out the effect of the thermoelectric element thickness on the thermal performance of the thermo-electric micro-cooler. The small-size and column-type thermoelectric cooler is considered. It is known that tellurium compounds currently have the highest cooling performance around the room temperature. Thus, in the present study, $Bi_{2}Te_{3}$ and $Sb_{2}Te_{3}$ are selected as the n- and p-type thermoelectric materials, respectively. The thermoelectric leg considered is less than $20{\mu}m$ thick. The thickness of the leg may affect the thermal and electrical transport through the interfaces between the leg and metal conductors. The effect of the thermoelectric element thickness on the thermal performance of the cooler has been investigated with parameters such as the temperature difference, the current, and the cooling power.

Fabrication of a Micro Cooler using Thermoelectric Thin Film (열전박막을 이용한 마이크로 냉각소자 제작)

  • Han, S.W.;Choi, H.J.;Kim, B.I.;Kim, B.M.;Kim, D.H.;Kim, O.J.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1459-1462
    • /
    • 2007
  • In general a thermoelectric cooler (TEC) consists of a series of P type and N type thermoelectric materials sandwiched between two wafers. When a DC current passes through these materials, three different effects take place; Peltier effect, Joule heating effect and heat transfer by conduction due to temperature difference between hot and cold plates. In this study we have developed a micro TEC using $Bi_2Te_3$ (N type) and $Bi_{0.5}Sb_{1.5}Te_3$ (P type) thin films. In order to improve that performance of a micro TEC, we made 10 um height TE legs using special PR only for lift-off. We measured COP (coefficient of performance) and temperature difference between hot and cold connectors with current.

  • PDF

Design of Continuous-flow Micro-PCR System (연속류형 Micro-PCR 시스템의 설계)

  • Kim, Duck-Jong;Kim, Jae-Yun;Park, Sang-Jin;Heo, Pil-Woo;Yoon, Eui-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.115-120
    • /
    • 2003
  • In this work, a continuous-flow micro-PCR system is systematically designed. From the numerical simulation based on the finite volume method, adapting oneself to a new environmental temperature without an external temperature controller is shown to be possible and a cooler as well as a heater is shown to be necessary to obtain three individual temperature zones for polymerase chain reaction. In addition, appropriate geometry of a heat sink for the cooler is determined by using a compact modeling method, the porous medium approach.

  • PDF

Optimal design of a micro evaporator to maximize heat transfer coefficient (열전달 계수 최대화를 위한 마이크로 증발기의 최적 설계)

  • Sung, Tai-Jong;Oh, Dae-Sik;Seo, Tae-Won;Kim, Jong-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2097-2101
    • /
    • 2007
  • This paper presents an optimal design of a micro evaporator which maximizes the heat transfer coefficient. Number of gaps, spanwise distance and streamwise distance are selected as the geometric design parameters. Mass flow rate of the refrigerant is selected as the non-geometric design parameter. Temperature at the surface of the heater is measured to valuate the heat transfer coefficient. Nine experiments are conducted using $L_9(3^4)$ orthogonal array. Maximum heat transfer coefficient is 640 W/$m^2K$ at the parameters of 2 gaps, 0.2 mm spanwise distance, 1.0 mm streamwise distance and 0.72 g/s mass flow rate. Among the 3 geometric parameters, the spanwise distance is the most sensitive parameter influencing the heat transfer coefficient. We conduct a second stage of experiment to increase the heat transfer coefficient by reselecting the mass flow rate. We concluded that 0.87 g/s is the optimized flow rate for an active micro cooler resulting in a heat transfer coefficient of 651 W/$m^2K$.

  • PDF

Validation of Structural Safety on Multi-layered Blade-type Vibration Isolator for Cryocooler under Launch Vibration Environment (적층형 블레이드가 적용된 냉각기용 진동절연기의 발사환경에서의 구조건전성 검증)

  • Jeon, Young-Hyeon;Ko, Dai-Ho;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.575-582
    • /
    • 2018
  • The spaceborne cooler is applied to cool down of the focal plane of the infrared detector of the observation satellite. However, this cooler induces unnecessary micro-jitter which can degrade the image quality of the high-resolution observation satellite. In this study, we proposed a multi-layered blade type vibration isolator to attenuate micro-vibration generated from a spaceborne cooler, while assuring structural safety of the cooler under severe launch loads without an additional launch-lock device. The blade of the isolator is formed with multi-layers in order to obtain durability against fatigue failure and an adhesive is applied between each layers for granting high damping capability under launch vibration environment. In this study, the basic characteristics of the isolator were measured using the free-vibration test. The effectiveness of the isolator design was demonstrated by launch vibration test at qualification level.

MIRIS 우주관측 카메라 Noise Test

  • Park, Yeong-Sik;Lee, Dae-Hui;Mun, Bong-Gon;Jeong, Ung-Seop;Lee, Chang-Hui;Park, Seong-Jun;Lee, Deok-Haeng;Pyo, Jeong-Hyeon;Nam, Uk-Won;Park, Jang-Hyeon;Lee, Seung-U;Matsumoto, Toshio;Han, Won-Yong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.126.2-126.2
    • /
    • 2011
  • MIRIS(Multipurpose InfraRed Imaging System)는 과학기술위성 3호의 주 탑재체이며 2012년 하반기 발사예정이다. MIRIS 우주관측 카메라는 0.9-2.0 ${\mu}m$ 영역에서 3.67 deg. x 3.67 deg. FOV로 우리 은하평면 survey 관측과 우주배경복사(CIB) 관측을 수행할 것이다. 현재 MIRIS는 비행모델 개발 마무리 단계에 있으며, 검교정 시험, 열-진공 시험, 진동 시험 등을 수행하고 나면 2011년 말 위성 본체와의 조립을 진행할 것이다. 망원경이 복사냉각(Passive Cooling)을 통해 200K 이하로 냉각되면, dewar에 설치된 소형 냉각기를 가동하여 적외선 센서를 90K 정도로 냉각한다. MIRIS 우주관측카메라에는 PICNIC($256{\times}256$ pixel) 센서를 사용하였고, 상온과 냉각된 상태에서의 노이즈 특성을 측정하였다. PICNIC 센서와 dewar내부를 냉각하기 위해 RICOR사의 K-508 micro stirling cooler를 사용하는데, cooler가 동작하면서 전자부에 영향을 주어 주된 잡음으로 나타남을 확인하였다. Cooler에서 발생하는 잡음을 최소화 하기위해 fanout B/D와 LVPS 부분을 개선하였으며, 본 발표에서는 잡음 측정 결과에 대해 논의 하고자 한다.

  • PDF