• Title/Summary/Keyword: Micro-Combustor

Search Result 83, Processing Time 0.023 seconds

Numerical Study of Combustion Characteristics Inside a Micro-Tube Combustor (마이크로 튜브 연소기의 연소특성에 대한 수치해석 연구)

  • Oh Chang Bo;Choi Byung Il;Han Yong Shik;Kim Myung Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1352-1359
    • /
    • 2005
  • Unsteady simulations were performed to investigate the flame structure and the dynamic behavior of a premixed flame exposed to the wall heat loss. A 3-step global reaction mechanism was adopted in this study. Simulations were performed for two tube combustors with inner diameters($d_i$) of 1mm and 4mm. The material of tube combustor was assumed to be a Silicon Nitride($Si_{3}N_4$). The heat loss from the outer tube wall was controlled by adjusting the amount of convective and radiative heat loss. A conical premixed flame could be stabilized inside a tube of $d_i=4mm$. The flame stability inside a tube of $d_i=4mm$ combustor was not much sensitive to the amount of heat loss. In case of a tube of $d_i=1mm$, an oscillating flame was observed in very low heat loss condition and a flame could not be sustained in realistic heat loss condition.

Development of Test Facility for Micro Gas Turbine (마이크로 가스터빈 시험 장치 개발)

  • Lim, Hyung-Soo;Choi, Bum-Seog;Park, Moo-Ryong;Hwang, Soon-Chan;Park, Jun-Young;Seo, Jeongmin;Bang, Je-Sung;Lim, Young-Chul;Oh, In-Kyun;Kim, Byung Ok;Cho, Ju Hyeong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.42-48
    • /
    • 2015
  • To improve the core technology of the micro gas turbine, the performance test facility was developed. This paper is focusing on the explanation of the characteristics of micro gas turbine and its assist devices. Major part of micro gas turbine were radial type of compressor, annular type of combustor, radial type of turbine, thrust foil bearing, radial foil bearing and generator. The assist devices were consist of exhaust duct, inverter, data acquisition system, load bank and test cell. Before building up the test facility, the component test was previously conducted to confirm the component performance. After the test facility was prepared, the motoring test was conducted to investigate the rotor dynamic characteristics of the micro gas turbine. Also, the part load performance test was performed. With a developed micro gas turbine test facility, the improved core technology about the micro gas turbine can be suggested to the related industries.

An Experimental Study on the Flame Behavior of Opposed Flow Flames in Narrow Channels (좁은 채널 내부의 대향류 화염 거동에 관한 실험적 연구)

  • Lee, Min Jung;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.9-12
    • /
    • 2012
  • In this study, opposed flow combustion was re-visited in a narrow channel. Various flame behaviors were observed. Due to the confined structure of the combustor in this study, flame structures at very narrow strain rate could be stabilized and their characteristics were investigated. This study will be helpful to understand overall flame behavior of non-premixed flame in a narrow combustion space, and will also be useful to develop small combustors.

  • PDF

Development of Component of Micro Thermal Device in KAIST (KAIST의 마이크로 열기관 요소 기술 개발)

  • Lee, Dae Hoon;Park, Dae-Eun;Yoon, Euisil;Kwon, Sejin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.482-485
    • /
    • 2002
  • Development projects in KAIST rotted to the micro thermal device is introduced. Multi disciplinary research team is composed by combustion group and semiconductor group in KAIST and catalyst research center in KRICT to develop micro thermal/fluidic device and various items are on development. Among the projects, various kind of componenst that is required by the micro thermal devicesystem is introduced. Technology related to development of micro combustor, Micro igniter, micro fabrication of 3D structure, micro reactor and micro catalyst preparation is introduced.

  • PDF

Development of Micro Power System (마이크로 파워 시스템의 개발)

  • Bang, Jung-Hwan;Kim, Sejun;Jeon, Byung-Sun;Min, Hong-Seok;Min, Kyoungdoug;Song, Seung-Jin;Joo, Young-Chang
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.477-481
    • /
    • 2002
  • This paper reports on the development of micro power system component under way at Seoul National University. The need of micro power system is explained and components of micro power system are described. The developments of hydrogen-air micro combustor, micro igniter based poly-silicon heater and micro thruster are described. To manufacture 3-D micro structure the process that manufactures high aspect ratio structures has been developed and optimized. Design, fabrication, and experiment processes are introduced and technical challenges in each phase are described.

  • PDF

Development of Hybrid/Dual Swirl Jet Combustor for a MGT (Part II: Numerical Study on Isothermal Flow) (마이크로 가스터빈용 하이브리드/이중 선회제트 연소기 개발 (Part II: 비반응 유동에 관한 수치해석))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Lee, Kee-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.70-79
    • /
    • 2013
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine (MGT) were numerically investigated. Location of pilot burner, swirl angle and direction were varied as main parameters with the identical thermal load. As a result, the variations in location of pilot nozzle, swirl angle and direction resulted in the significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus the flame stability and emission performance might be significantly changed. With the comparison of experimental results, the case of swirl angle $45^{\circ}$ and co-swirl flow including optimum location of pilot burner were chosen in terms of the flame stability and emissions for the development of hybrid/dual swirl jet combustor.

Design and Fabrication method of combustor for micro solid propellant thruster (MEMS 고체 추진제 추력기의 추진제실 설계와 구조체 가공 방법)

  • Lee, Jong-Kwang;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.251-254
    • /
    • 2006
  • Micro thruster is a key technology in the micro/nano satellite. MSPT has been attracted attention as a one of possible solution for micro thruster MSPT as a systems four components. It is composed of nozzle, igniter, combustion chamber and propellant. This paper surveys varioud MSPTs which have been reported. The model of MSPT arrays for total impulse of 1 mNs is proposed. Combustion chamber is designed and fabricated.

  • PDF

Numerical and Experimental Analysis of Micro Gas Turbine Heat Transfer Effect (초소형 가스터빈엔진 열전달 현상의 수치적 및 실험적 연구)

  • Seo, Junhyuk;Kwon, Kilsung;Choi, Ju Chan;Baek, Jehyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.153-159
    • /
    • 2015
  • In this study, a 2-W micro-gas turbine engine was designed using micro-electro-mechanical systems (MEMS) technology, and analytical and experimental investigations of its potential under actual combustion conditions were performed. An ultra-micro-gas turbine contains a turbo-charger, combustor, and generator. A compressor, turbine blade, and generator coil were manufactured using MEMS technology. The shaft was supported by a precision computer numerical control machined air bearing, and a permanent magnet was attached to the end of the shaft for generation. An analysis found that the cooling effect of the air bearing and compressor was sufficient to cover the combustor heat, which was verified in an actual experiment.

Design and Development of Micro Combustor (II) - Design and Test of Micro Electric Spark discharge Device for Power MEMS - (미세 연소기 개발 (II) - 미세동력 장치용 미세 전극의 제작과 성능평가 -)

  • Gwon, Se-Jin;Lee, Dae-Hun;Park, Dae-Eun;Yun, Jun-Bo;Han, Cheol-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.524-530
    • /
    • 2002
  • Micro electric spark discharge device was fabricated on a FOTURAN glass wafer using MEMS processing technique and its performance of electron discharge and subsequent formation of ignition kernel were tested. Micro electric spark device is an essential subsystem of a power MEMS that has been under development in this laboratories. In a combustion chamber of sub millimeter scale depth, spark electrodes are formed by electroplating Ni on a base plate of FOTURAN glass wafer. Optimization of spark voltage and spark gap is crucial for stable ignition and endurance of the electrodes. Namely, wider spark gaps insures stable ignition but requires higher ignition voltage to overcome the spark barrier. Also, electron discharge across larger voltage tends to erode the electrodes limiting the endurance of the overall system. In the present study, the discharge characteristics of the proptotype ignition device was measured in terms of electric quantities such as voltage and currant with spark gap and end shape as parameters. Discharge voltage shows a little decrease in width of less than 50㎛ and increases with electrode gap size. Reliability test shows no severe damage over 10$\^$6/ times of discharge test resulting in satisfactory performance for application to proposed power MEMS devices.