• Title/Summary/Keyword: Micro-Climate

Search Result 169, Processing Time 0.03 seconds

Analysis on Residential Micro Climate of the Urban Heat Island and Oxygen Concentration in Winter (겨울철 열섬 및 산소농도의 측정을 통한 주거지별 국지기후의 특성분석)

  • Hwang Jee Wook;Kim So Chong
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1023-1032
    • /
    • 2004
  • Rapid progress in urbanization has resulted in a change of the micro climate, especially in the urban area. In order to investigate the phenomenon of the heat island in the residential micro climate, a field survey was carried out by 4 sets of the residential type in Jeonju under typical winter synoptic condition. As analytic methode, it is used the comparison on the relation of the Land-to-Coverage Rate to Heat Island and Oxygen Concentration. And as a key question it is asked how stable characteristics of the micro climate will result from the survey of the Heat Island and the Oxygen Concentration, used as indicator. To ensure the trustworthy result of research, it is calculated the critical influence of the wind velocity and the Land-to-Covearage Rate. As a result of comparative analysis, it could be confirmed that the local temperatures in all sets of the residential type were higher than the average temperature in Jeonju. But the housing type A 'exclusive use for housing zone' has relativly the most stable and best living condition. On the contrary the residential type B and D has the worst toward the oxygen concentration in the time zone 9-12 a.m., which didn't reach the minimum of the oxygen concentration $20.5{\%}.$ It means that the higer the development and population density is, the worse is the situation of the Quality of Life in the residential types in accordance with the heat island and oxygon con­centration.

A Study on Pattern Recognition to Compute Guidelines Based on Evidence for Ecological Healing Environment at Agha Khan Hospital in Karachi - Focused on Human Thermal Comfort Model (HTCM), for Karachi, using Climate Consultant Program

  • Shaikh, Javaria Manzoor;Park, Jae Seung
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.27-35
    • /
    • 2015
  • Purpose: Healthcare is on the whole a personal and critical service that consumer's use, whereas hospitalization is as a rule painful, because nature nurtures and Sun Light Luminosity for healthcare settings is considered healing. The performance and design of climate responsive buildings such as AKU requires a detailed study of attributes of climate both at micro as well as macro level. The therapeutic value of contact with nature through window view, greenery and landscape is calculated there. Method: A two prong strategy is been devised for this article, at micro level three typical morphologies are analysed by creating same environment of neighboring building on sun shading chart, radiation and temperature range. Since the analysis of local climate helps to determine the design strategies for hospital Healing Environment which is suitable for Karachi climate; in order to track the macro climatic behaviour, a considerable analysis of psychometrics chart for AKU Karachi are designed on Climate Consultant (CC) and analysed by Machine Learning. Climate Consultant proposes different design strategies suitable for Karachi. And on the other hand time wise illumination sources for clinical area which are then measured on psychrometric chart- according to singular space: multi patient admission, secondly: acute ambulatory ward, and tertiary: multi windowed space according to the mushrabiyah and sky light pattern. Result: Our findings support the hypothesis that windowed wall is 75-80% more healing wall; an accelerated evidence was found for healing at macro level if the form of the hospital is designed according to the climatologically preferences, whereas at micro level: the light resource becomes the staff attentiveness determinant. In Conclusion evidence was provided that the actual form of luminosity results consequently in satisfaction while light entering from several set of windows and other sources might be valued if design according to the healing environment. The data added on the sun shading chart to calculate rays entraining into space in patient room equal to 124416.21 Watts/ meter $m^2$ is calculated as precise healing rate-and is confirmed by questionnaire from patients belonging from each clinical stage having different illnesses.

A study on Applicability through Comparison of Weather Data based on Micro-climate with existing Weather Data for Building Performative Design (건물 성능디자인을 위한 미기후 기반 기상데이터의 기존 기상데이터와 비교를 통한 활용 가능성 연구)

  • Kim, Eon-Yong;Jun, Han-Jong
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.101-108
    • /
    • 2011
  • The weather data has important role for performative building design. If the data location is close to building site, the result of performative design can be accurate. The data which have used nowadays in Korea are from U.S. Department of Energy (DOE) and Korea Solar Energy Society (KSES) but they cover only several locations in Korea which are 4 in DOE and 11 in KSES and there are opinions which it could be served building design efficiently even if the data are not enough. However the weather data for micro-climate are exist which are Green Building Studio Virtual Weather Station (GBS VWS) and Meteonorm weather data. Each weather data has different generation methods which are TMY2, TRY, MM5, and extrapolation. In this research, the weather date for climate are compared with DOE and KSES to check correlation. The result shows the value of correlation in Dry Bulb Temp. and Dew Point Temp. is around 0.9 so they have high correlation in both but in Wind Speed case the correlation(around 0.2) is not exist. In overall result, the data has correlation with DOE and KSES as the value of correlation 0.648 of GBS VW and 0.656 of Meteonorm. Even if the correlation value is not high enough, the patterns of difference in each weather element are similar in scatter plot.

Integrated Korean Flora Database: A versatile web-based database for dissecting flora investigations with climate data

  • Yeon, Jihun;Kim, Yongsung;Kim, Hyejeong;Kim, Juhyun;Park, Jongsun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.32-32
    • /
    • 2018
  • Flora investigations in Korea have been conducted by many researchers for diverse purposes. Accumulated flora investigation data has not been utilized efficiently because there is no accessible database for comparison. To overcome this shortcoming, we constructed web-based database of flora investigation, named as the Integrated Korean Flora Database (IKFD; http://www.floradb.net/intro.php). Until now, 284 flora references (263 papers, 14 reports and books, and 7 unpublished papers written in between 1962 and 2017) were digitalized into the database. From 134,711 records, 4,301 species belonging to 228 families and 1,079 genera were identified via mapping with two major Korean plant species lists. Polygon areas originated from references were used for distribution of plant species, identifying precise distribution area. It will be a better index to show plant ecological characteristics. Collected micro-climate data provided by Korea Meteorology Administration were also integrated in IFKD for understanding correlation between distribution of plants and micro-climate. Cold hardiness zone which has been utilized for classifying climate zones. 12 out of 26 zones identified based on micro-climate data in Korea were mapped with distribution of plants. More than half species were appeared in zone 6a, 6b, 7a, and 7b. Taken together with these results, IKFD will be a fundamental platform for understanding plants in Korea flora investigation as well as a new standard for classifying distribution of plants. Moreover, Biodiversity Observation Database (BODB; http://www.biodiversitydb.info/intro.php) which integrates plant distribution data was also integrated for further studies.

  • PDF

A Building Heating and Cooling Load Analysis of Super Tall Building considering the Vertical Micro-climate Change (초고층 오피스 건물의 수직외부환경 변화가 건물부하에 미치는 영향)

  • Kim, Yang-su;Song, Doosam;Hwang, Suk-Ho
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.117-122
    • /
    • 2010
  • In these days numerous super tall buildings are under construction or being planned in Middle East and Asian countries. Some of them are planned as an ultra high-rise building that goes over 600m tall, including Burj Khalifa, the tallest building in the world. External environment such as wind speed, temperature and humidity of the super tall building varies due to its vertical height. Therefore, it is necessary to consider these environmental changes to estimate building heating and cooling load. This paper analyzes how vertical microclimate difference affects building heating and cooling load in super tall building by simulation using radiosonde climate data. Besides, the correlation between air-tightness of building envelope and building load was analyzed for a super tall building.

The Numerical Prediction of the Micro Climate Change by a Residential Development Region

  • Oh, Eun-Joo;Lee, Hwa Woon;Kondo, Akira;Kaga, Akikazu;Yamaguchi, Katsuhito
    • Journal of Environmental Science International
    • /
    • v.12 no.5
    • /
    • pp.529-539
    • /
    • 2003
  • We developed a numerical model that considered the influences on the thermal environment of vegetation, water surfaces and buildings to predict micro climatic changes in a few $\textrm{km}^2$ scales; and applied this model to the Mino residential development region in Osaka Prefecture by using a nested technique. The calculated temperatures and winds in the residential development region reasonably agreed with the observed ones. We then investigated the influences on the thermal environment of the construction of a dam, the change of the green coverage rate. The results obtained from the numerical simulations were qualitatively reasonable.

Surface Micro-Climate Analysis Based on Urban Morphological Characteristics: Temperature Deviation Estimation and Evaluation (도시의 지표형태학적 특성에 기반한 지면미기후 분석: 기온추정 및 평가)

  • Yi, Chaeyeon;An, Seung Man;Kim, KyuRang;Kwon, Hyuk-gi;Min, Jae-Sik
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.445-459
    • /
    • 2016
  • Air temperature deviation (ATD) is one of major indicators to represent spatial distribution of urban heat island (UHI), which is induced from the urbanization. The purpose of this study is to evaluate the accuracy of air temperature deviation about Climate Analysis Seoul (CAS) workbench, which had developed by National Institute Meteorological Science and TU Berlin. Comparison and correlation analysis for CAS ATD including meso-scale air temperature deviation, local-scale air temperature deviation, total air temperature deviation, surface heat flux deviation, cold air production deviation among meso-scale numerical modelling variable in 'Seoul Region', micro-scale numerical modelling in 'Detail Region', and CAS workbench variable using observation data in ground stations. Comparison between night time OBS ATD and CAS ATD show that have most close values. Most of observations ($dT_{max}$ and $dT_{min}$) have highly positive ($dT_{SHP}$, $dT_{CA}$, MD, TD, $f_{BS}$, $f_{US}$, $f_{WS}$, $h_B$) and negative ($f_{VS}$, $f_{TV}$, $h_V$, Z) correlations. However, CAS workbench needs further improvement of both observational framework and analytical framework to resolve the problems; (1) night time OBS ATD of has closer values in compare with at high rise mountain area and (2) correlations are very dependable to meteorological scale.

Precision monitoring of radial growth of trees and micro-climate at a Korean Fir (Abies koreana Wilson) forest at 10 minutes interval in 2016 on Mt. Hallasan National Park, Jeju Island, Korea

  • Kim, Eun-Shik;Cho, Hong-Bum;Heo, Daeyoung;Kim, Nae-Soo;Kim, Young-Sun;Lee, Kyeseon;Lee, Sung-Hoon;Ryu, Jaehong
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.226-245
    • /
    • 2019
  • To understand the dynamics of radial growth of trees and micro-climate at a site of Korean fir (Abies koreana Wilson) forest on high-altitude area of Mt. Hallasan National Park, Jeju Island, Korea, high precision dendrometers were installed on the stems of Korean fir trees, and the sensors for measuring micro-climate of the forest at 10 minutes interval were also installed at the forest. Data from the sensors were sent to nodes, collected to a gateway wireless, and transmitted to a data server using mobile phone communication system. By analyzing the radial growth data for the trees during the growing season in 2016, we can estimate that the radial growth of Korean fir trees initiated in late April to early May and ceased in late August to early September, which indicates that period for the radial growth was about 4 months in 2016. It is interesting to observe that the daily ambient temperature and the daily soil temperature at the depth of 20 cm coincided with the values of about 10 ℃ when the radial growth of the trees initiated in 2016. When the radial growth ceased, the values of the ambient temperature went down below about 15 ℃ and 16 ℃, respectively. While the ambient temperature and the soil temperature are evaluated to be the good indicators for the initiation and the cessation of radial growth, it becomes clear that radii of tree stems showed diurnal growth patterns affected by diurnal change of ambient temperature. In addition, the wetting and drying of the surface of the tree stems affected by precipitation became the additional factors that affect the expansion and shrinkage of the tree stems at the forest site. While it is interesting to note that the interrelationships among the micro-climatic factors at the forest site were well explained through this study, it should be recognized that the precision monitoring made possible with the application of high resolution sensors in the measurement of the radial increment combined with the observation of 10 minutes interval with aids of information and communication technology in the ecosystem observation.

Numerical Simulation for Urban Climate Assessment and Hazard (도시기후 평가와 방재를 위한 도시기상 수치모의)

  • O, Seong-Nam
    • Magazine of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.4 s.7
    • /
    • pp.40-47
    • /
    • 2002
  • Since it is important to understand the bio-climatic change in Seoul for ecological city planning in the future, this paper gives an overview on bio-climate analysis of urban environments at Seoul. We analyzed its characteristics in recent years using the observations of 24 of Automatic Weather Station (AWS) by Korea Meteorological Administration (KMA). In urbanization, Seoul metropolitan area is densely populated and is concentrated with high buildings. This urban activity changes land covering, which modifies the local circulation of radiation, heat and moisture, precipitation and creating a specific climate. Urban climate is evidently manifested in the phenomena of the increase of the air temperature, called urban heat Island and in addition urban sqall line of heavy rain. Since a city has its different land cover and street structure, these form their own climate character such as climate comfort zone. The thermal fold in urban area such as the heat island is produced by the change of land use and the air pollution that provide the bio-climate change of urban eco-system. The urban wind flow is the most important climate element on dispersion of air pollution, thermal effects and heavy shower. Numerical modeling indicates that the bio-climatic transition of wind wake in urban area and the dispersion of the air pollution by the simulations of the wind variation depend on the urban land cover change. The winds are separately simulated on small and micro-scale at Seoul with two kinds of kinetic model, Witrak and MUKLIMO.

  • PDF

The Planning of Micro-climate Control by Complex Types (단지 유형에 따른 도시의 미기후 조절 계획에 관한 연구)

  • Jeong, Juri;Chung, Min Hee
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • Purpose: Temperature in urban areas increase much more than suburban areas and it is called urban heat island (UHI) phenomenon. There are several solutions to control UHI phenomenon such as green roof system, water space construction, and cool roof system. However, application of green roof system and cool roof system to some of the buildings which compose the city has a critical limit. Therefore, in order to diminish the temperature rising and UHI phenomenon due to climate change of the city, it needs to approach from the viewpoint of site or city, rather than the viewpoint of individual buildings. This study is aims at analyzing UHI phenomenon by characteristics of surface materials and suggesting the solutions to reduce UHI phenomenon by types of complex. Method: Literature reviews were conducted to analyze the cause, mitigating plan, and recent trends of UHI phenomenon. For the simulation analysis, the type of complex was classified 3 representative complex. Based on measured reflectivity, simulation about UHI phenomenon was conducted by setting 4 strategies; albedo of roof, road pavement, green roof system, and vegetating around buildings. Result: As the results of simulating the UHI reduction factor by types of complex, it showed that the effect of temperature reduction on the building roof layer is more effective than adjusting the reflectivity of buildings such as green roof system, planting near the buildings in both the detached house complex, apartment complex, and commercial complex.