• Title/Summary/Keyword: Micro-Cavity effect

Search Result 48, Processing Time 0.027 seconds

The Effect of Surface Micro Texturing on Friction and Wear of Polyoxymethylene (POM 마찰 및 마모에 대한 마이크로 표면 텍스처링의 영향)

  • Lee, Jae-Bong;Cho, Min-Haeng
    • Tribology and Lubricants
    • /
    • v.25 no.3
    • /
    • pp.141-149
    • /
    • 2009
  • The effect of micro-cavities fabricated using laser surface texturing (LST) technique on polyoxymethylene (POM) surface was studied in terms of heat affected zone (HAZ), cavity geometry, surface roughness, deformation of cavity along with sliding cycles, and tribological characteristics. Cavity process parameters were lamp current, process time, and the stream of air used to minimize the flow of molten polymer into cavity. Especially, the deformation of cavity geometry was extensively studied to provide deep insight into morphological analysis of the cavities. Also, this paper presents the behavior of friction and wear of POM specimens as a function of sliding cycles.

A Study on the Effects of Micro Cavity on the HTL Thicknesses on the Top Emission Organic Light Emitting Diode (유기발광 다이오드의 정공수송층 두께에 따른 미소 공진 효과의 영향에 관한 연구)

  • Lee, DongWoon;Cho, Eou Sik;Seong, Jin-Wook;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.91-94
    • /
    • 2022
  • Top emission organic light-emitting diode is commonly used because of high efficiency and good color purity than bottom - emission organic light-emitting device. Unlike BEOLED, TEOLED contain semi-transparent metal cathode. Because of semi-transparent cathode, micro cavity effect occurs in TEOLED. We optimized this effect by changing the thickness of hole injection layer. Device consists of is indium-tin-oxide / N,N'-Di-[(1-naphthyl)-N,N'-diphenyl]-1,1'-biphenyl-4,4'-diamine (x nm) / tris-(8-hydroxyquinoline) aluminum (50nm) / LiF(0.5nm) / Mg:Ag (1:9), and we changed NPB thickness which is used as HTL in our device in order to study how micro cavity effects are changed by optical path. As the results, NPB thickness at 35nm showed the current efficiency of 8.55Cd/A.

Finite Element Study on the Micro-cavity Effect in OLED Devices

  • Lee, Hyeongi;Hwang, Youngwook;Won, Taeyoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 2014
  • In this paper, we discuss on the optimal design scheme of the bilayer OLED (Organic Light Emitting Diodes) with micro-cavity structure. We carried out the optical simulation on the OLED device and calculated optimal scale of devices with taking the micro-cavity effect into account. Our emission model is based upon an ensemble of radiating dipole antennas. Consequently, we applied Maxwell's equation to this sequence, followed by the analysis on the electrical behaviors of OLED device using Poisson's equation. It contains carrier injection and transportation mechanism. In this process, we found out the thickness of each layer can affect the recombination rate at the emission layer. Therefore, we optimized the thickness of each layer to improve the efficiency of the device.

A Study on the Efficiency Effects of Capping Layer on the Top Emission Organic Light Emitting Diode (전면 유기발광 다이오드 기능층 캐핑레이어 적용에 따른 효율상승에 관한 연구)

  • Lee, DongWoon;Cho, Eou Sik;Jeon, Yongmin;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Top emission organic light-emitting diode (TEOLED) is commonly used because of high efficiency and good color purity than bottom - emission organic light-emitting device (BEOLED). Unlike BEOLED, TEOLED contain semitransparent metal cathode and capping layer. Because there are many characteristics to consider just simple thickness change, optimizing organic thickness of TEOLED for microcavity is difficult. So, in this study, we optimized Device capping layer at unoptimized micro-cavity structure TEOLED device. And we compare only capping layer with unoptimized microcavity structure can overcome optimized micro-cavity structure device. We used previous our optimized micro-cavity structure to compare each other. As a result, it has been found that the efficiency can be obtained almost the same or higher only capping layer, which is stacked on top of the device and controls only the thickness and refractive index, without complicated structural calculations. This means that higher efficiencies can be obtained more easily in laboratories with limited organic materials or when optimizing new structures etc.

Characteristics of micro-dimple formed on polyoxymethylene surface by Nd:YAG laser texturing technique (Nd:YAG 레이저를 이용한 polyoxymethylene 표면의 마이크로 딤플가공 및 특성에 관한 연구)

  • Cho, Min-Haeng;Lee, Jae-Bong;Lee, Seong-Hyuk;Kim, Joo-Han
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.193-197
    • /
    • 2008
  • Array of micro-dimple on polyoxymethylene (POM) surface was fabricated using Q-switched Nd:YAG laser and its characteristics were studied in terms of heat affected zone (HAZ), dimple geometry, and the effect of specimen surface roughness. Process parameters such as lamp current, process time, and the stream of air in order to minimize HAZ and flow of molten polymer into cavity were extensively studied in this work. Dimple geometry was further investigated by 3-D optical microscopy to provide deep insight into morphological analysis near the dimples. This paper also presents the applicapability of micro-dimples in polymeric tribological system, such as a thrust bearing. Micro-dimples were expected to provide low coefficient of friction and enhanced lubricity at the sliding interface.

  • PDF

NUMERICAL STUDY ON HYDRODYNAMIC LUBRICATION CHARACTERISTICS OF MICRO-DIMPLE TEXTURED SURFACES (미세 딤플 가공 표면의 수력학적 윤활특성에 대한 수치해석 연구)

  • Hong, S.H.;Lee, J.B.;Cho, M.H.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.363-367
    • /
    • 2009
  • Recently, the manufacturing of micro-cavity by means of laser surface texturing (LST) technique and low friction study by the LST have been in great progress. Most of current works have been dealing with the effect of cavity on friction and wear. The main objective of the present study was to investigate numerically two-dimensional lubrication characteristics of micro-dimple shapes fabricated on solid surfaces, and this study utilized the commercial CFD code (Fluent V.6.3). For the evaluation, preliminary simulation was conducted and numerical predictions were compared with the analytic solution obtained from the Reynolds's equation. Mainly, the present study investigated the influence of dimple depth, pattern shapes, and film thickness on lubrication characteristics related to the reduction of friction. It is found that the existence of micro-dimpled surface makes it possible to substantially reduce the friction forces exerted on the surfaces. In particular, substantial decrease in shear stresses was observed as the lubricant film thickness decreases. For instance, in the case of the film thickness of 0.01 mm, the estimated shear stress decreases up to about 40%. It indicates that the film thickness would be important factor in designing the micro-dimpled surfaces. Furthermore, it was observed that such a optimum dimple depth would be present because the dimple depth larger than the optimum value did no longer affect the reduction in shear stresses.

  • PDF

Micro-Cavity Effect of ZnO/Ag/ZnO Multilayers on Green Quantum Dot Light-Emitting Diodes

  • Lee, Hyungin;Kim, Jiwan
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.174-177
    • /
    • 2018
  • ZnO/Ag/ZnO multilayers were fabricated and their optical properties were investigated in terms of the micro-cavity effect in electroluminescent devices based on colloidal quantum dots. The top and bottom ZnO layers were formed by a sol-gel method while the middle Ag layer was deposited by thermal evaporation. After the fabrication of the ZnO/Ag/ZnO structure, the transmittance increased to 74%. When the oxide/metal/oxide multilayers were applied to quantum dot light-emitting diodes, the color purity was enhanced due to the narrower full width at half maximum.

Discimination of Decoupled Explosions from Microearthquakes

  • Kim, So-Gu
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1995.03a
    • /
    • pp.108-108
    • /
    • 1995
  • There are always some difficulties to discriminate artificial exlposions from micro-earthquakes, furthermore more difficulties to identify and determine decoupled explosions and/or multiple explosions from micro-earthquakes. In this study we use the synthetic seismogram of the in homogeneous models between the source and the observation station in order to find the source effect of the geological environment. We have found some source characteristics of the air-filled and/or water-filled cavity that we can hardly see P-n and S- waves arrivals and that the high frequency coda waves are well observed compared to the coupled explosions or earthquakes.

  • PDF

Atmospheric Pressure Micro Plasma Sources

  • Brown, Ian
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.5
    • /
    • pp.384-390
    • /
    • 2001
  • The hollow cathode discharge is a kind of plasma formation scheme in which plasma is formed inside a hollow structure, the cathode, with current to a nearby anode of arbitrary shape. In this scheme, electrons reflex radially within the hollow cathode, establishing an efficient ionization mechanism for gas within the cavity. An existence condition for the hollow cathode effect is that the electron mean-free-path for ionization is of the order of the cavity radius. Thus the size of this kind of plasma source must decrease as the gas pressure is increased. In fact, the hollow cathode effect can occur even at atmospheric pressure for cathode diameters of order 10-100 $\mu\textrm{m}$. That is, the "natural" operating pressure regime for a "micro hollow cathode discharge" is atmospheric pressure. This kind of plasma source has been the subject of increasing research activity in recent years. A number of geometric variants have been explored, and operational requirements and typical plasma parameters have been determined. Large arrays of individual tiny sources can be used to form large-area, atmospheric-pressure plasma sources. The simplicity of the method and the capability of operation without the need for the usual vacuum system and its associated limitations, provide a highly attractive option for new approaches to many different kinds of plasma applications, including plasma surface modification technologies. Here we review the background work that has been carried out in this new research field.

  • PDF

A study on the micro pattern replication properties of large area in injection molding (대면적 미세패턴 사출성형에서의 전사 특성 실험)

  • Kim, T.H.;Yoo, Y.E.;Je, T.J.;Kim, C.W.;Park, Y.W.;Choi, D.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.205-208
    • /
    • 2007
  • We injection molded a thin plate with micro prism patterns on its surface and investigated the fidelity of replication of the micro pattern depending on the process parameter such as mold temperature, injection rate or packing pressure. The size of the $90^{\circ}$ prism pattern is $50{\mu}m$ and the size of the plate is $400mm{\times}400mm$. The thickness is 1mm. The fidelity of the replication turned out quite different according to the process parameters and location of the patterns of the plate. We measured the cavity pressure and temperature in real-time during the molding to analyze the effect of the local melt pressure and temperature on the micro pattern replication.

  • PDF