• Title/Summary/Keyword: Micro thermal device

Search Result 100, Processing Time 0.037 seconds

Development of Cooling Garment for Extremely Hot Environment Using a Peltier Device and its Comfort Properties (고온환경 작업을 위한 펠티어 소자 냉각복 개발 및 쾌적성 평가)

  • Jung, Ye-Lee;Chae, Young-Jin;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • This paper reports on a prototype cooling garment applying a cooling module. The cooling module was composed of a Peltier device, a cold sink, a heat sink and two fans. A constant box was used to evaluate the cooling effect of the module. Two cooling modules were attached on each side of the garment. The wear trial was conducted using 10 male subjects in an environmental chamber maintained at $30{\pm}0.5^{\circ}C$, $50{\pm}5%$RH. Subjective sensations of thermal, humidity, and comfort were surveyed. Statistical package SPSS12.0 was used for the t-test and the Wilcoxon signed-rank test. The results showed that most effective cooling module decreased the temperature of the constant temperature box by $-4.9^{\circ}C$. The micro-temperature of the cooling garment with a Peltier device was lower than the control garment during the exercise. In particular, the chest skin temperature was $1.5^{\circ}C$ lower with the cooling garment than the control. The maximum temperature difference was $-2.57^{\circ}C$ on the sides of the $1^{st}$ layer. Subjective thermal sensation from wear trials of the Peltier device attached garment was lower than the control garment. Subjects felt more comfortable with the cooling garment in almost all the periods.

Fabrication and Characterization of Thermoelectric Thick Film by Using Bi-Te-Sb Powders

  • Yu, Ji-Hun;Bae, Seung-Chul;Ha, Gook-Hyun;Kim, Ook-Jung;Lee, Gil-Gun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.430-431
    • /
    • 2006
  • Thermoelectric thick film was fabricated by screen printing process with using p-type Bi-Te-Sb powders. The powder was synthesized by melting, milling and sintering process and hydrogen reduced to enhance the thermoelectric property. The thick film of Bi-Te-Sb powder was fabricated by screen printing method and baked at the optimized conditions. The thermal conductivity, the electrical resistivity and Seeback coefficient of thick film were measured and the thermoelectric performance was analyzed in terms of film characteristics and its microstructure. Finally, the feasibility of thermoelectric thick film into micro cooling device on CPU chip was discussed in this study.

  • PDF

The Fabrication and Characteristics of RTD(Resistance Thermometer Device) for Micro Thermal Sensors (마이크로 열 센서용 측온저항체 온도센서의 제작 및 특성)

  • Chung, Gwiy-Sang;Hong, Seog-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.171-176
    • /
    • 2000
  • The physical and electrical characteristics of MgO and Pt thin-films on it, deposited by reactive sputtering and rf magnetron sputtering, respectively, were analyzed with annealing temperature and time by four-point probe, SEM and XRD. Under annealing conditions of $1000^{\circ}C$ and 2 hr, MgO thin-film had the properties of improving Pt adhesion to $SiO_2$ and insulation without chemical reaction to Pt thin-film, and the sheet resistivity and the resistivity of Pt thin-film deposited on it were $0.1288\;{\Omega}/{\square}$ and $12.88\;{\mu}{\Omega}{\cdot}cm$, respectively. We made Pt resistance pattern on $SiO_2$/Si substrate by lift-off method and fabricated thin-film type Pt-RTD(resistance thermometer device) for micro thermal sensors by Pt-wire, Pt-paste and SOG(spin-on-glass). In the temperature range of $25{\sim}400^{\circ}C$, the TCR value of fabricated Pt-RTD with thickness of $1.0{\mu}m$ was $3927\;ppm/^{\circ}C$ close to the Pt bulk value. Resistance values were varied linearly within the range of measurement temperature.

  • PDF

A Study on Thermal Stability of Ga-doped ZnO Thin Films with a $TiO_2$ Barrier Layer

  • Park, On-Jeon;Song, Sang-Woo;Lee, Kyung-Ju;Roh, Ji-Hyung;Kim, Hwan-Sun;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.434-436
    • /
    • 2013
  • Ga-doped ZnO (GZO) was substitutes of the SnO2:F films on soda lime glass substrate in the photovoltaic devices such as CIGS, CdTe and DSSC due to good properties and low cost. However, it was reported that the electrical resistivity of GZO is unstable above $300^{\circ}C$ in air atmosphere. To improve thermal stability of GZO thin films at high temperature above $300^{\circ}C$ an $TiO_2$ thin film was deposited on the top of GZO thin films as a barrier layer by Pulsed Laser Deposition (PLD) method. $TiO_2$ thin films were deposited at various thicknesses from 25 nm to 100 nm. Subsequently, these films were annealed at temperature of $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$ in air atmosphere for 20 min. The XRD measurement results showed all the films had a preferentially oriented ( 0 0 2 ) peak, and the intensity of ( 0 0 2 ) peak nearly did not change both GZO (300 nm) single layer and $TiO_2$ (50 nm)/GZO (300 nm) double layer. The resistivity of GZO (300 nm) single layer increased from $7.6{\times}10^{-4}{\Omega}m$ (RT) to $7.7{\times}10^{-2}{\Omega}m$ ($500^{\circ}C$). However, in the case of the $TiO_2$ (50 nm)/GZO (300 nm) double layer, resistivity showed small change from $7.9{\times}10^{-4}{\Omega}m$ (RT) to $5.2{\times}10^{-3}{\Omega}m$ ($500^{\circ}C$). Meanwhile, the average transmittance of all the films exceeded 80% in the visible spectrum, which suggests that these films will be suitable for photovoltaic devices.

  • PDF

Analysis of Heat Loss Effect of Combustion in Closed Vessel (정적 연소실에서의 열 손실 해석 모델)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.1
    • /
    • pp.14-19
    • /
    • 2001
  • Interests and importance of down-scale combustor is increasing with the emerging need for miniaturized power source which is now a bottleneck of micro system development. But in down scaled combustor increased heat loss compared to thermal energy generation inhibits the usability and application of the device, so as a preliminary work of down scaled combustor fabrication. Modeling tool for the device should be established, in this study modeling approach of closed vessel combustion phenomena that can express heat loss effect and resulting quenching is proposed and the result is compared with experiment data. From this model heat loss effect following combustor scale down can be further understood, and further more design parameter and analysis tool can be obtained.

  • PDF

Development of an Electrostatic Drop-On-Demand inkjet Device for Display Fabrication Process

  • Son, Sang-Uk;Choi, Jae-Yong;Lee, Suk-Han;Kim, Yong-Jae;Ko, Han-Seo;Kim, Hyun-Cheol;Byun, Do-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.655-659
    • /
    • 2006
  • This paper presents a novel electrostatic drop-on-demand inkjet device featured by a MEMS fabricated pole-type and hole-type nozzle with tube shaped orifice and investigates the feasibility of applying the inkjet device to display fabrication process. The electric voltage signal applied to the ring shaped upper electrode plate, against the hole-shaped ground or pole-shaped ground, referred here pole-type and hole-type nozzle respectively, allows ejection of small droplet to take place: That is, a tiny droplet is taken away from the peak of the mountain shaped liquid meniscus formed at the nozzle orifice. It is verified experimentally that the use of the pole type nozzle allows a stable and sustainable micro-dripping mode of droplet ejection for a wider range of applied voltages and of liquid viscosities. This demonstrates a feasibility of electrostatic drop-on-demand inkjet device as a disruptive alternative to conventional print heads such as thermal bubble or piezoelectric inkjet heads.

  • PDF

The Characteristics of High Speed Feed Drive System using High Lean Screw (High Lead Ball Screw를 사용한 고속이송계의 특성)

  • 고해주;박성호;정윤교
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.97-103
    • /
    • 2001
  • The study on the high-speed machine tool is very important for the improvement of productivity since it can shortens cutting and non-cutting time. Especially, high speed of feed drive system is the major research field. In the industries of the advanced countries, the feed drive systems at the speed of 60 m/min have been already developed based on the high lead ball screws. In this study, a high speed feed drive system at the speed of 60 m/ min has been developed, and its movements characteris-tics are investigated. As the movement characteristics, positioning accuracy, angular accuracy, straightness and micro step-response are measured. Thermal characteristics of the system is also discussed. For measuring the movement characteris-tics, a laser interferometer, a memory-based Hi-coder and a cooling device are used. The experimental results confirm that the movement characteristics and the thermal behavior of the system are satisfactory in the aspect of accuracy and stability.

  • PDF

Thermoplastic Fusion Bonding of UV Modified PMMA Microfluidic Devices (UV 개질된 PMMA 미세유체 장치의 열가소성 폴리머 용융 접합)

  • Park, Taehyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.441-449
    • /
    • 2014
  • Thermoplastic fusion bonding is widely used to seal polymer microfluidic devices and optimal bonding protocol is required to obtain a successful bonding, strong bonding force without channel deformation. Besides, UV modification of the PMMA (poly-methyl methacrylate) is commonly used for chemical or biological application before the bonding process. However, study of thermal bonding for the UV modified PMMA was not reported yet. Unlike pristine PMMA, the optimal bonding parameters of the UV modified PMMA were $103^{\circ}C$, 71 kPa, and 35 minutes. A very low aspect ratio micro channel (AR=1:100, $20{\mu}m$ depth and $2000{\mu}m$ width) was successfully bonded (over 95%, n>100). Moreover, thermal bonding of multi stack PMMA chips was successfully demonstrated in this study. The results may applicable to fabricate a complex 3 dimensional microchannel networks.

Microgripper driven by E-T(Electro-Thermal) actuator (E-T(Electro-Thermal) 액츄에이터를 이용한 microgripper)

  • Park, Ho-Joon;Lee, Hyun-Ki;Pak, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3325-3327
    • /
    • 1999
  • A microgripper driven by E-T (electro-thermal) actuators has been designed and fabricated by surface micromachining. This microgripper consists of two E-T actuators. Each actuator has two arms with different widths joined at the end to form a 'U' shape. The wider 'cold' arm has a narrow flexure at the end (anchor or electrode side) for easy bending, This actuator can be fabricated with only two masks - one for the sacrificial layer and the other for the poly-Si structure layer. An E-T actuator bends its arm due to unequal thermal expansion between the 'cold' arm and the 'hot' arm, This actuator tip moves laterally in an arcing motion towards the cold arm side when the structure is unevenly heated by the applied current. Therefore each microgripper is actuated inwards and can hold a micro object. The fabricated E-T actuator was operated in the range of $2{\sim}12V$ and $1{\sim}5mA$. and maximum tip displacement was $13.6{\mu}m$. This device may become useful in many applications because an E-T actuator can be designed and fabricated easily, and obtain large displacement.

  • PDF

A Study on the Thermo-Mechanical Stress of MEMS Device Packages (마이크로 머신(MEMS) 소자 패키지의 열응력에 대한 연구)

  • Jeon, U-Seok;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.744-750
    • /
    • 1998
  • Unlike common device, MEMS(micro-electro-mechanical system) device consists of very small mechanical structures which determine the performance of the device. Because of its small mechanical structure inside. MEMS device is very sensitive to thermal stress caused by CTE(coefficient of thermal expansion) mismatch between its components. Therefore, its characteristics are affected by material properties. process temperature. and dimensions of each layer such as chip, adhesive and substrate. In this study. we investigated the change of the thermal stress in the chip attached to a substrate. With computer-aided finite element method (FEM), the computer simulation of the thermal stress was conducted on variables such as bonding material, process temperature, bonding layer thickness and die size. The commercial simulation program, ABAQUS ver5.6, was used. Subsequently 3-layer test samples were fabricated, and their degree of bending were measured by 3-D coordinate measuring machine. The experimental results were in good agreement with the simulation results. This study shows that the bonding layer could be the source of stress or act as the buffer layer for stress according to its elastic modulus and CTE. Solder adhesive layer was the source of stress due to its high elastic modulus, therefore high compressive stress was developed in the chip. And the maximum tensile stress was developed in the adhesive layer. On the other hand, polymer adhesive layer with low elastic modulus acted as buffer layer, and resulted in lower compressive stress. The maximum tensile stress was developed in the substrate.

  • PDF