• 제목/요약/키워드: Micro syringe

검색결과 24건 처리시간 0.031초

초소형 주사 시스템의 모의 혈관 내에서의 작동 시험 (In Vitro Test of a Micro Syringe Fabricated for the Intravascular Injection)

  • 김근영;심우영;이상우;양상식;장준근;이승기
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권6호
    • /
    • pp.307-313
    • /
    • 2001
  • A micro syringe which can be attached to the end of a micro intravascular endoscope for drug injection is fabricated and its characteristic is tested. The syringe consists of a drug chamber and an actuator chamber which are separated by a silicone rubber membrane. The drug chamber is filled with liquid drug by the membrance actuation caused by the vaporization and condensation of the working liquid in the actuator chamber. The liquid drug is ejected by the electrolysis of the working liquid. The membrane deflection by each actuation method has been measured. The liquid ejection image has been captured during the electrolysis of the electrolyte. Also, the successful operation of the micro syringe under the normal blood pressure was verified.

  • PDF

랩온어칩 내부 미세유동제어를 위한 새로운 유동제어기법 (A New Flow Control Technique for Handling Infinitesimal Flows Inside a Lab-On-a-Chip)

  • 한수동;김국배;이상준
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.110-116
    • /
    • 2006
  • A syringe pump or a device using high electric voltage has been used for controlling flows inside a LOC (lab-on-a-chip). Compared to LOC, however, these microfluidic devices are large and heavy that they are burdensome for a portable ${\mu}-TAS$ (micro total analysis system). In this study, a new flow control technique employing pressure regulators and pressure chambers was developed. This technique utilizes compressed air to control the micro-scale flow inside a LOC, instead of a mechanical actuator or an electric power supply. The pressure regulator controls the output air pressure by adjusting the variable resistor attached. We checked the feasibility of this system by measuring the flow rate inside a capillary tube of $100{\mu}m$ diameter in the Re numbers ranged from 0.5 to 50. In addition, the performance of this flow control system was compared with that of a conventional syringe pump. The developed flow control system was found to show superior performance, compared with the syringe pump. It maintains automatically the: air pressure inside a pressure chamber whether the flow inside the capillary tube is on or off. Since the flow rate is nearly proportional to the resistance, we can control flow in multiple microchannels precisely. However, the syringe pump shows large variation of flow rate when the fluid flow is blocked in the microchannel.

마이크로 PTV 기법을 이용한 미세채널 내부 계면의 electrokinetic 효과 해석 (Micro-PIV Measurements of interfacial electrokinetic effects in a microchannel)

  • 김국배;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.49-50
    • /
    • 2002
  • In micro-channels, the electro-viscous effect is caused by the electrical double layer on pressure-driven liquid flow. Velocity fields of flow inside micro-channels were measured using micro-PIV system for investigating the electro-viscous effect. De-ionized water and aqueous NaCl solutions with four different concentrations were used as working fluid in a PDMS micro-channel of $100{\mu}m$ width and $66{\mu}m$ height. The pressure gradient, dP/dx, was determined from the pre-determined input flow rate Q of syringe pump. The mean velocity $u_m$ used for calculating Reynolds number was obtained from the PIV velocity field data. These are used to plot the pressure gradient as a function of Reynolds numbers. The pressure gradient far lower concentration solution $(10^{-5}\;M)$ was higher than that for the higher concentration solution. The increase of flow resistance was about $30\%\;and\;37.5\%$ at Re=0.02 and 0.06, respectively.

  • PDF

MEMS 공정을 이용한 마이크로 액체 추력기 배열체 제작 (Fabrication of a liquid microthruster array by MEMS manufacturing process)

  • 허정무;권세진
    • 항공우주시스템공학회지
    • /
    • 제9권2호
    • /
    • pp.13-18
    • /
    • 2015
  • Micro planar type liquid propellant thruster was fabricated by MEMS manufacturing process for micro/nano satellites applications. 90 wt.% hydrogen peroxide was used as propellant and for propellant decomposition, Pt/Al2O3 was used as catalyst. Micro thruster structure was made by 5 photosensitive glasses patterned with thruster component profiles. Objective thrust was 50 mN and required hydrogen peroxide mass flow was 2.1 ml/min, which was supplied by syringe pump and teflon tube in experimental test. Performance test said that average steady thrust was approximately 30 mN, around 60% of objective thrust, and transient time was about 5 sec. It is estimated that extended response time was due to high thermal energy loss of micro scale thruster and low enthalpy input by propellant mass flow.

랩온어칩 내부 미세유동 제어를 위한 새로운 장치의 개발 및 적용 (Development of A New Device for Controlling Infinitesimal Flows inside a Lab-On-A-Chip and Its Practical Application)

  • 김보람;김국배;이상준
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.305-308
    • /
    • 2006
  • For controlling micro-flows inside a LOC (lab-on-a-chip) a syringe pump or an electronic device for EOF(electro-osmotic flow) have been used in general. However, these devices are so large and heavy that they are burdensome in the development of a portable micro-TAS (total analysis system). In this study, a new flow control system employing pressure chambers, digital switches and speed controllers was developed. This system could effectively control the micro-scale flows inside a LOC without any mechanical actuators or electronic devices We also checked the feasibility of this new control system by applying it to a LOC of micro-mixer type. Performance tests show that the developed control system has very good performance. Because the flow rate in LOC is controlled easily by throttling the speed controller, the flows in complicate microchannels network can be also controlled precisely.

  • PDF

마이크로 광 조형 기술을 이용한 마이크로 밸로우즈 액추에이터의 개발 (Development of Micro-bellows Actuator Using Micro-stereolithography Technology)

  • 강현욱;이인환;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.615-618
    • /
    • 2005
  • All over the world, many kinds of micro-actuators were already developed for various applications. The actuators are using various principles such as electromagnetic, piezoelectric and thermopneumatic etc. The most of the micro-actuators have been made using 2D based MEMS technology. In these actuators, it is difficult to drive 3-dimensional motion. This characteristic gives the limit of actuator application. However, micro-stereolithography technology has made it possible to fabricate freeform three-dimensional microstructures. In this technology, 2-dimensional micro-shape layer is cumulated on the other layers. This layer-by-layer process is the main principle to fabricate 3-dimensioal micro-structures. In this research, a micro-bellows actuator that is vertically moving was developed using the micro-stereolithography technology. When pressure was applied into the bellows, a non-contact actuating motion is generated. For actuation experiment, syringe pump and laser interferometer were used for applying pressure and measuring the displacement. Several hundreds micro-scale actuation was observed. And, to demonstrate the feasibility of proposed actuation principle, in this research, a micro-gripper was developed using half-bellows structure.

  • PDF

마이크로 PIV를 이용한 미세튜브 내부 조류 혈액유동에 관한 실험적 연구 (Experimental Investigation on Flow Characteristics of Chicken Blood in a Micro Tube Using a Micro-PIV Technique)

  • 여창섭;지호성;이상준
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1027-1034
    • /
    • 2006
  • In order to investigate flow characteristics of chicken blood in a micro tube of 100$\mu$m in diameter, in-vitro experiments were carried out using a micro-PIV technique. The micro-PIV system consists of a microscope, 2-head Nd:YAG laser, 12 bit cooled CCD camera and a delay generator. Chicken blood with 40% hematocrit was supplied into a micro tube using a syringe pump. The blood flow shows clearly the cell free layer near the tube wall and its thickness is increased with increasing the flow speed. The hemorheological characteristics of chicken blood, including shear rate and shear stress were estimated from the PIV velocity field data obtained. Since the aggregation index of chicken blood is less than 50% of human blood, non-Newtonian flow characteristics of chicken blood are smaller than those of human blood. As the flow rate increases, the degree of flatness in the velocity profile at the center region is decreased and the parabola-shaped shear stress distribution becomes to have a linear profile. Under the same flow rate, chicken blood shows higher shear stress, compared with human blood.

Syringe Connector를 이용하여 조영제를 자동 주입장치에 연결 시 분쇄물 혼입에 관한 연구 (A Study on the Mixing of Pulverization Matters when the Contrast Medium is connected to the Automatic Injection Device using the Syringe Connector)

  • 김현주;김지은;한유빈;최승현;강윤기;정유진;정민영;이후민
    • 한국방사선학회논문지
    • /
    • 제12권6호
    • /
    • pp.777-783
    • /
    • 2018
  • 고무화합물 형태로 구성된 조영제의 병에 Syringe Connector의 Spike를 연결 시 고무의 찢김 정도를 알아 보고 찢김 및 분쇄로 인한 합성고무의 혼입 유무와 분쇄된 합성고무가 검출 시 분쇄물의 크기를 실험을 통해 알아보고자 하였다. 그 결과 찢김 정도의 경우 Syringe Connector의 끝과 최초 접촉하는 앞면이 약 $3.14{\pm}0.04mm$로 뒷면 보다 많이 찢겼으며, 실험 대상인 10 병의 조영제에서 평균 7 개에서 15 개로 모두 분쇄물이 검출되었다. 검출된 분쇄물을 이용하여 크기를 측정한 결과 평균크기는 약 $7.89{\pm}0.31{\mu}m$이었다. 향 후 다양한 실험 및 분석방법을 통한 추가실험과 더불어 흡인된 분쇄물 차단을 위한 미세 필터타입 자동주입장치의 개발이 필요하며, 분쇄물 유입 시 치명적 사고를 대비하여 관련기관의 관심 또한 필요할 것으로 사료된다.

T헝 마이크로채널 연결부 압력구동 유동의 PIV계측 (PIV Measurements of the Pressure Driven Flow Inside a T-Shaped Microchannel Junction)

  • 최제호;이인섭
    • 한국가시화정보학회지
    • /
    • 제1권1호
    • /
    • pp.75-81
    • /
    • 2003
  • A custom micro-PIV optics assembly has been used to measure the flow fold inside a T-junction of a microchannel. The micro-PIV system consists of microscope objectives of various magnifications, a dichroic cube, and an 8-bit CCD camera. Fluorescent particles of diameters 620 nm have been used with a Nd:YAG laser and color filters. A programmable syringe pump with Teflon tubings were used to inject particle-seeded distilled water into the channel at flow rates of 2.0, 4.0, 6.0 mL/hr. The micro-channels are fabricated with PDMS with a silicon mold, then O$_{2}$ -ion bonded onto a slide glass. Results show differences in flow characteristics and resolution according to fluid injection rates, and magnifications, respectively. The results include PIV data with vector-to-vector distances of 2 $\mu$m with 32 pixel-square interrogation windows at 50$\%$ overlap.

  • PDF

In-vitro study on the hemorheological characteristics of chicken blood in microcirculation

  • Ji, Ho-Seong;Lee, Jung-Yeop;Lee, Sang-Joon
    • Korea-Australia Rheology Journal
    • /
    • 제19권2호
    • /
    • pp.89-95
    • /
    • 2007
  • The flow characteristics of chicken blood in a micro-tube with a $100{\mu}m$ diameter are investigated using a micro-Particle Image Velocimetry (PIV) technique. Chicken blood with 40% hematocrit is supplied into the micro-tube using a syringe pump. For comparison, the same experiments are repeated for human blood with 40% hematocrit. Chicken blood flow has a cell-free layer near the tube wall, and this layer's thickness increases with the increased flow speed due to radial migration. As a hemorheological feature, the aggregation index of chicken blood is about 50% less than that of human blood. Therefore, the non-Newtonian fluid features of chicken blood are not very remarkable compared with those of human blood. As the flow rate increases, the blunt velocity profile in the central region of the micro-tube sharpens, and the parabolicshaped shear stress distribution becomes to have a linear profile. The viscosity of both blood samples in a low shear rate condition is overestimated, while the viscosity in a high shear rate range is underestimated due to radial migration and the presence of a cell-depleted layer.