• Title/Summary/Keyword: Micro shape

Search Result 1,019, Processing Time 0.035 seconds

The beam property simulation for the fabrication of a MLA(Micro Lens Array) (MLA(Micro Lens Array) 제작을 위한 광학 시뮬레이션)

  • Oh, Hae-Kwan;Seo, Hyun-Woo;Kim, Geun-Young;Wei, Chang-Hyun;Song, Yo-Tak;Lee, Kee-Keun;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1497_1498
    • /
    • 2009
  • This paper presents the simulation of micro-lens arrays based on dry and wet etching technique. Code V (Optical Research Associates Ltd) simulation was performed to extract optimal design parameters of a Micro-Lens Array(MLA). Thickness of UV adhesive, wavelength of laser source, curvature, and shape of lens surface were chosen for the design parameters. The simulation results showed that focal length of a MLA decreased with the increase of UV adhesive thickness. And the focal length depended on shape of lens surface and length of laser source.

  • PDF

Visualization of Electro-osmotic Flow Instability in a T-shape Microchannel (T자형 마이크로 채널 내부 전기삼투 유동의 불안정성 가시화)

  • Han, Su-Dong;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.45-50
    • /
    • 2005
  • Electro-osmotic flow (EOF) instability in a microchannel has been experimentally investigated using a micro-PIV system. The micro-PIV system consisting of a two-head Nd:Yag laser and cooled CCD camera was used to measure instantaneous velocity fields and vorticity contours of the EOF instability in a T-shape glass microchannel. The electrokinetic flow instability occurs in the presence of electric conductivity gradients. Charge accumulation at the interface of conductivity gradients leads to electric body forces, driving the coupled flow and electric field into an unstable dynamics. The threshold electric field above which the flow becomes unstable and rapid mixing occurs is about 1000V/cm. As the electric field increases, the flow pattern becomes unstable and vortical motion is enhanced. This kind of instability is a key factor limiting the robust performance of complex electrokinetic bio-analytical devices, but can also be used for rapid mixing and effective flow control fer micro-scale bio-chips.

  • PDF

Fabrication of Bending Actuator for Micro Active Catheter (초소형 작동형 내시경용 Bending 액츄에이터의 제작)

  • Lee, Kwang-Ho;Lee, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.615-617
    • /
    • 1997
  • This paper reports experimental results on the fabrication and analysis of millimeter-sized bending actuators for active catheter by use of the shape memory alloy spring and the flexible beam. The major components of micro actuator are shape memory alloy spring, stainless steel strip and two acryl links. The micro actuator with the diameter of 2.0 mm and the length of 25 mm has been fabricated and characterized for the possible application to the micro active catheters. The measured maximum angle is $60^{\circ}$ and the response time is 5 sec.

  • PDF

Reliability analysis test of high brightness micro optical component and module (고휘도 마이크로 광부품 / 모듈의 신뢰성 분석 시험)

  • Lee N.K.;Lee H.J.;Choi S.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.535-536
    • /
    • 2006
  • Researches about micro technology travel lively in these days. Such many researches are concentrated in the field of materials and a process field. But properties of micro materials should be known to give results of research developed into still more. In these various material properties, reliability data such as mechanical, optical, thermal property, etc is the basic property. In this paper, it is measured that is material properties of main BLU(Back Light Unit) components in LCD(Liquid Crystal Display). The pattern shape of prism sheet, diffuser film and reflective plate are measured by variable 3D scanning equipments. It is researched which is the method to measure an optimal 3D pattern shape in each components.

  • PDF

Finite Element Analysis for Shape Prediction on Micro Lens Forming (마이크로 렌즈 성형시 형상예측을 위한 유한요소해석)

  • 전병희;홍석관;표창률
    • Transactions of Materials Processing
    • /
    • v.11 no.7
    • /
    • pp.581-588
    • /
    • 2002
  • Among the processes to produce micro lens, the process using press molding is a new technology to simplify the process, but it contains many unknown variables. The press-molding process proposed in this paper was simplified into two step process, the first step is the pressing to design the preform for glass element, the second step is the annealing to reduce the residual stress. It is important to estimate the amount of shrinkage of glass gob and the residual stress during process. It Is difficult to evaluate the process variables as mentioned above through the experiment. The influences due to process variables was evaluated by using FEM parametric analysis. The results in this paper can be applicable to produce micro lens.

A Study on the Micro Parts Manufacturing Technology by Micro End-milling (마이크로 앤드밀링에 의한 미소 부품 가공기술 연구)

  • Je, T.J.;Lee, J.C.;Choi, H.;Lee, E.S.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.167-172
    • /
    • 2003
  • The machining method by using end-milling tool has been applying in machining structures of various shapes because of the availability. Recently, all kinds of industries based on the parts of micro shape are developing, and the demands of mechanical micro machining technology are Increasing suddenly to produce these parts. According to such changes, the technology of the micro end-milling machining is applying as one of the most important machining means. This research is to aim at developing machining technology for various micro structures using micro end-mill. This paper introduces micro mechanical machining system with ultra precision, and demonstrates methods manufacturing all sorts of parts and moldings for industry and examples of applicable machining by using micro end-milling tool of micro sizes from hundreds to tens in diameter.

  • PDF

Development of Intravascular Micro Active Endoscope(II) -System Design, Fabrication and In-vitro Evaluation- (혈관 삽입용 초소형 작동형 내시경의 개발(II) - 시스템 설계, 제작 및 체외 성능 분석 -)

  • Chang, Jun-Keun;Chung, Seok;Lee, Yong-Ku
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.278-286
    • /
    • 1999
  • To predict the behavior of the intravascular micro active endoscope in the real human vascular system, a human mock circulation system was developed. The intravascular micro active endoscope which consists of micro active bending catheter and micro drug infusion catheter was driven in the velocity, Re number and temperature controlled flow. The three SMA (Shape Memory Alloy) zigzag type spring in the micro active bending catheter was heated by the electric current generated by PWM controller, and the shape memory effect made the actuator bend to any direction. The micro drug infusion catheter was driven through the inner hole of the micro active bending catheter. A mock circulation system is shaped from Ascending Arota to Femoral artery according to a human data (the data contains many vascular sizes and hydrographs of many control points). We developed a vascular model with glass and silicone tubes, and set the flow system with circulation parts, flow settling parts, and lots of valves. The heater and heat-controller was added to the How system to centre! the temperature of the How at 36.5$^{\circ}C$. The result showed that the developed intravascular micro active endoscope could be induced to any point in the vascular model.

Parameter Optimization of a Micro-Static Mixer Using Successive Response Surface Method (순차적 반응표면법을 이용한 마이크로 정적 믹서의 최적설계)

  • Han, Seog-Young;Maeng, Joo-Sung;Kim, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1314-1319
    • /
    • 2004
  • In this study, parameter optimization of micro-static mixer with a cantilever beam was accomplished for maximizing the mixing efficiency by using successive response surface approximations. Variables were chosen as the length of cantilever beam and the angle between horizontal and the cantilever beam. Sequential approximate optimization method was used to deal with both highly nonlinear and non-smooth characteristics of flow field in a micro-static mixer. Shape optimization problem of a micro-static mixer can be divided into a series of simple subproblems. Approximation to solve the subproblems was performed by response surface approximation, which does not require the sensitivity analysis. To verify the reliability of approximated objective function and the accuracy of it, ANOVA analysis and variables selection method were implemented, respectively. It was verified that successive response surface approximation worked very well and the mixing efficiency was improved very much comparing with the initial shape of a micro-static mixer.

Weibull Statistical Analysis of Micro-Vickers Hardness using Monte-Carlo Simulation (몬테카를로 시뮬레이션에 의한 미소 비커스 경도의 Weibull 통계 해석)

  • Kim, Seon-Jin;Kong, Yu-Sik;Lee, Sang-Yeal
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.346-352
    • /
    • 2009
  • In the present study, the Weibull statistical analysis using the Monte-Carlo simulation has been performed to investigate the micro-Vickers hardness measurement reliability considering the variability. Experimental indentation test were performed with a micro-Vickers hardness tester for as-received and quenching and tempering specimens in SCM440 steels. The distribution of micro-Vickers hardness is found to be 2-parameter Weibull distribution function. The mean values and coefficients of variation (COV) for both data set are compared with results based on Weibull statistical analysis. Finally, Monte-Carlo simulation was performed in order to evaluate the effect of sample size on the micro-Vickers hardness measurement reliability. For the parent distribution with shape parameter 30.0 and scale parameter 200.0 (COV=0.040), the number of sample data required to obtain the true Weibull parameters was founded by 20. For the parent distribution with shape parameter 10.0 and scale parameter 200.0 (COV=0.1240), the number of sample data required to obtain the true Weibull parameters was founded by 30.