• Title/Summary/Keyword: Micro pore

Search Result 336, Processing Time 0.033 seconds

Liquid Phase Adsorption Properties of Organo Surfur Compounds on Cation Exchanged Natural Zeolites (陽이온 交換한 天然 제올라이트에 依한 有機黃化合物의 液相吸着 特性)

  • Kim, Jong-Taik;Heo, Nam-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.194-202
    • /
    • 1984
  • The adsorption properties of organo sulfur compounds on cation exchanged natural zeolites from n-heptane were investigated. The equilibrium adsorbed amounts were dependent upon the exchanged cation and the nature of organo sulfur compounds such as length, volume, electronical structure. The increasing orders of equilibrium adsorbed amounts were thiophene derivatives, disulfide, sulfide mercaptane and thiophene, benzothiaphene, dibenzothiophene. And $Co^{+2}$-zeolite was the most prominent adsorbant. Rate determining step of the adsorption at initial stage was intraparticle diffusion into the transitional pores of zeolite. These adsorption rates were dependent upon the bulkiness of adsorbate. Finally, preadsorbed water didn't affect these adsorption until the cation exchanged natural zeolite contained 2.26${\times}10^{-3}$ mol/g of water. It indicated that water preferentially occupied the micro pores of the cation exchanged natural zeolites.

  • PDF

A Study on Characteristics of Early Age Pore-structure and Carbonation of Ground Granulated Blast Furnace Slag Concrete (고로슬래그미분말 콘크리트의 초기재령특성과 중성화에 관한 연구)

  • 변근주;박성준;하주형;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.107-110
    • /
    • 1999
  • The objective of this study is to obtain characteristics of early age pore-structure and carbonation of concrete using ground granulated blast furnace slag (GGBFS). The durability of GGBFS concrete should be evaluated for wide use of the GGBFS. As for that evaluation, an analysis on early age pore-structure characteristics of GGBFS concrete are very important, Carbonation depths of GGBFS concrete, which are known to be larger than that of OPC, are different according to replacement ratios and fineness of slag. Because sea sand as fine aggregate is much used recently, it is also necessary to analyze characteristics of carbonation of GGBFS concrete. In this study, The micro-pore structure formation characteristics of GGBFS concrete are obtained through the test of GGBFS mortars with different fineness and replacement ratio of GGBFS. The carbonation of GGBFS concrete is also investigated by acclerated carbonation test for early age GGBFS concrete.

  • PDF

Effect of Si/$Si_3N_4$ Ration on the Micro structure and Properties of Porous Silicon Nitride Prepared by SHS Method (규소/질화규소 비가 자전연소합성공정을 이용한 다공질 질화규소 세라믹스의 미세구조와 특성에 미치는 영향)

  • Kim, Dong-Baek;Park, Dong-Su;Han, Byeong-Dong;Jeong, Yeon-Gil
    • 연구논문집
    • /
    • s.34
    • /
    • pp.131-138
    • /
    • 2004
  • Porous silicon nitride ceramics were prepared by Self-propagating High Temperature Synthesis from silicon powder, silicon nitride powder and the pore-forming precursor. The microstructure, porosity and the flexural strength of the porous silicon nitride ceramics were varied according to the Si/$Si_3N_4$ ratio, size and amount of the pore-forming precursors. Some samples exhibited as high flexural strength as $162\pm24$ MPa. The high strength is considered to result from the fine pore size and the strong bonding among the silicon nitrid particles.

  • PDF

Micromechanics based Models for Pore-Sructure Formation and Hydration Heat in Early-Age Concrete (초기재령 콘크리트의 세공구조 형성 및 발영특성에 관한 미시역학적 모델)

  • 조호진;박상순;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.123-128
    • /
    • 1999
  • Recently, as a performance based design concept is introduced, assurance of expected performances on serviceability and safety in the whole span of life is exactly requested. So, quantitative assessments about durability related properties of concrete in early-age long term are come to necessary, Especially in early age, deterioration which affects long-term durability performance can be occurred by hydration heat and shrinkage, so development of reasonable hydration heat model which can simulate early age behavior is necessary. The micor-pore structure formation property also affects shrinkage behavior in early age and carbonations and chloride ion penetration characteristic in long term, So, for the quantitative assessment on durability performance of concrete, modelings of early age concrete based on hydration process and micor-pore structure formation characteristics are important. In this paper, a micromechanics based hydration heat evolution model is adopted and a quantitative model which can simulate micro-pore structure development is also verified with experimental results. The models can be used effectively to simulate the early-age behavior of concrete composed of different mix proportions.

  • PDF

Numerical Analysis of Cyclic Deformation of Polymer Foam Film Using Stretched Truncated Octahedron Model (모서리가 제거된 팔면체 인장모델을 이용한 다공성 폴리머 박막의 반복변형거동 수치해석)

  • Yoo, Ui-Kyung;Lee, Young-Seog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.104-110
    • /
    • 2010
  • Cyclic deformations of polymer foam film are simulated using the finite element method. Material of polymer foam film is polypropylene (PP). The calculated polymer foam film is micro-scale thin film has cellular structure. The polymer foam film is used in ferro-electret applications. The polymer foam film is idealized to one cell structure as lens shaped stretched truncated octahedron model. Cyclic deformation is performed by uniaxial stretching. Stretching direction is perpendicular to plane of cellular film. Various cyclic strain amplitudes, pore wall thicknesses, pore shape are investigated to find deformation tendency of cellular structure. Consequently, cellular structure has various macroscopic stresses on cyclic deformation with various pore thickness and pore shape.

The Preparation of PAN-based Activated Carbon Fiber by KOH (KOH 활성화에 의한 PAN계 활성탄소섬유의 제조)

  • 김기원;정승훈;임연수;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.577-582
    • /
    • 1999
  • Activated carbon fibers were prepared from stabilized PAN fibers by chemical activation using hydroxide. The variations in specific surface area amount of iodine adsorption micro-structure and pore size distribution in the activated carbon fibers after the activation process were discussed. In the chemical activation using potassium hydroxide specific surface area of about 2545m2/g and amount of iodine adsorption of 2049 mg/g were obtained at the condition of KOH/fiber ratio of 1 and 800$^{\circ}C$ Nitrogen adsorption isotherms for PAN based activated carbon fibers showed the type I in the Brunauer-Deming-Deming-Teller classification indicating the micro-pores consisting the activated fibers.

  • PDF

Hydroxyapatite Precipitation Phenomena on Micro-pore Formed Ti-Nb Alloy by PEO technique

  • Kim, Jeong-Jae;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.137-137
    • /
    • 2015
  • The purposed of this work was to observe hydroxyapatite precipitation phenomena on micro-pore formed Ti-Nb alloy by PEO technique. The Ti-30Nb and Ti-30Ta alloys were remelted at least ten times in order to avoid inhomogeneity, and then cylindrical specimens (diameter 10 mm, thickness 4 mm) were cut by using laser from cast ingots of the Ti alloys. Heat treatment was carried out at $1050^{\circ}C$ for 2 h for homogenization in argon atmosphere. The morphologic change of the alloys were examined by X-ray diffractometer (XRD) and field emission scanning electron microscopy (FE-SEM).

  • PDF

Numerical Simulation of Supercritical $CO_2$ Flow in a Geological Storage Reservoir of Ocean (해양 지중저장층내 초임계 $CO_2$ 유동에 대한 전산모사)

  • Choi, Hang-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.251-257
    • /
    • 2011
  • In the present study, a 3-dimensional (3D) numerical model was developed to mimic the micro porous structure of a geological $CO_2$ storage reservoir. Especially, 3D modeling technique assigning random pore size to a 3D micro porous structure was devised. Numerical method using CFD (computational fluid dynamics) was applied for the 3D micro porous structure to calculate supercritical $CO_2$ flow field. The three different configurations of 3D micro porous model were designed and their flow fields were calculated. For the physical conditions of $CO_2$ flow, temperature and pressure were set up equivalent to geological underground condition where $CO_2$ fluid was stored. From the results, the characteristics of the supercritical $CO_2$ flow fields were scrutinized and the influence of the micro pore configuration on the flow field was investigated. In particular, the pressure difference and consequent $CO_2$ permeability were calculated and compared with increasing $CO_2$ flow rate.

Relationship between the Thickness of Micorporous Layer and the Flow of Fuel at the Anode GDL of DMFC (DMFC의 연료극에서 GDL의 Microporous layer의 두께와 연료흐름과의 관계)

  • Lee, Eun-Suk;Yang, Kyoung-Hun;Lim, Jong-Man
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.474-476
    • /
    • 2006
  • 본 연구에서는 다양한 두께, loading 및 기공 구조를 갖는 MPL을 형성하여 DMFC용 확산층을 제조하였다. 본 실험에서 제조한 확산층의 경우, 두께가 증가하면서 기공이 micro-pore에서 meso-pore 영역으로 옮겨감을 확인할 수 있었으며, 또한 기공구조에 따라 공기 투과도 특성이 변화하는 것을 확인할 수 있었다 각각의 확산층은 서로 다른 운전 조건에서 우수한 성능(흑은 안정적인 성능)을 갖는 것으로 확인되었으며, 이는 용도에 따른 확산층의 적합한 구조 설계가 요구됨을 의미한다.

  • PDF

Study on Performance and Durability of the Proton Exchange Membrane Fuel Cell with Different Micro Porous Layer Penetration Thickness (미세다공층의 침투깊이가 다른 기체확산층이 고분자전해질 연료전지의 성능과 내구성에 미치는 영향에 관한 연구)

  • Cho, Junhyun;Park, Jaeman;Oh, Hwanyeong;Min, Kyoungdoug;Jyoung, Jy-Young;Lee, Eunsook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.81.2-81.2
    • /
    • 2011
  • The gas diffusion layer (GDL) consists of two main parts, the GDL backing layer, called as a substrate and the micro porous layer (MPL) coated on the GDBL. In this process, carbon particles of MPL penetrates to the GDBL consequently forms MPL penetration part. In this study, the micro porous layer (MPL) penetration thickness is determined as a design parameter of the GDL which affect pore size distribution profile through the GDL inducing different mass transfer characteristics. The pore size distribution and water permeability characteristics of the GDL are investigated and the cell performance is evaluated under fully/low humidification conditions. Transient response and voltage instability are also studied. In addition, to determine the effects of MPL penetration on the degradation, the carbon corrosion stress test is conducted. The GDL that have deep MPL penetration thickness shows better performance in high current density region because of enhanced water management, however, loss of penetrated MPL parts is shown after aging and it induces worse water management characteristics.

  • PDF