• Title/Summary/Keyword: Micro pore

Search Result 339, Processing Time 0.025 seconds

Measurement of Adsorption Characteristic Using a Quartz Crystal Resonator (수정진동자를 이용한 흡착특성의 측정)

  • Kim, Byoung Chul;Sung, Ick Gi;Yamamoto, Takuji;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.368-372
    • /
    • 2009
  • A technique to measure the adsorption characteristic of surface area and pore size distribution is proposed and its performance is examined. While the existing equipment utilizes liquid nitrogen, the proposed uses carbon dioxide at the room temperature leading to the small measuring device with easy operation and short measurement time. The performance of the device has been examined with micro-particle carbon cryogel and bamboo activated carbon. The results from the proposed device compared with those of the adsorption apparatus indicate that the measurement of meso-porous material is comparable but micro-porous material gives some error.

Characteristics of chondrocytes adhesion depends on geometric of 3-dimensional scaffolds fabricated by micro-stereolithography (마이크로 광 조형 기술로 제작된 3차원 인공지지체의 구조적 형태에 따른 연골세포의 생착 특성)

  • Lee S.J.;Kim B.;Lim G.;Kim S.W.;Rhie J.W.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.173-174
    • /
    • 2006
  • Understanding chondrocyte behavior inside complex, three-dimensional environments with controlled patterning of geometrical factors would provide significant insights into the basic biology of tissue regenerations. One of the fundamental limitations in studying such behavior has been the inability to fabricate controlled 3D structures. To overcome this problem, we have developed a three-dimensional microfabrication system. This system allows fabrication of predesigned internal architectures and pore size by stacking up the photopolymerized materials. Photopolymer SL5180 was used as the material for 3D scaffolds. The results demonstrate that controllable and reproducible inner-architecture can be fabricated. Chondrocytes harvested from human nasal septum were cultured in two kinds of 3D scaffolds to observe cell adhesion behavior. Such 3D scaffolds might provide effective key factors to study cell behavior in complex environments and could eventually lead to optimum design of scaffolds in various tissue regenerations such as cartilage, bone, etc. in a near future.

  • PDF

An Experimental Study on Freezing-Thawing and Mechanical Properties of Lightweight Foamed Concrete Using Micro Foaming Agent (기포제를 사용한 경량 콘크리트의 역학적 특성 및 동결융해 평가에 관한 실험적 연구)

  • Min, Tae-Beom;Woo, Young-Je;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.69-72
    • /
    • 2009
  • This research is focused on the applying of the foaming agent which can make the independent pore in the concrete structure in order to make a lightweight concrete structure. This lightweight foamed concrete can satisfy both the required strength and the mechanical properties as structural members. In addition, anti freezing-thawing properties also required. As a result of the unit volume-weight measurement, when the foaming agent mixed at 0.5% to 1%, the lightweight foamed concrete can be applied for the structural member. Also the density and compressive strength measurement results reveals that it will be suitable as structural member with 21MPa strength, when the density is betweenity8 to 1.9 and foaming agent quantities are 0.5% to 1%. Finally the result of freezing-thawing experiment, the effect freezing-thawing damage reduced according to adding foaming agent because those foaming agent make micro-pores in the structure which are not seen in the ordinary concrete structure.

  • PDF

Evaluation of Chemical Mechanical Polishing Performances with Microstructure Pad (마이크로 표면 구조를 가지는 CMP 패드의 연마 특성 평가)

  • Jung, Jae-Woo;Park, Ki-Hyun;Chang, One-Moon;Park, Sung-Min;Jeong, Seok-Hoon;Lee, Hyun-Seop;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.651-652
    • /
    • 2005
  • Chemical mechanical polishing (CMP) has emerged as the planarization technique of choice in integrated circuit manufacturing. Especially, polishing pad is considered as one of the most important consumables because of its properties. Generally, conventional polishing pad has irregular pores and asperities. If conditioning process is except from whole polishing process, smoothing of asperities and pore glazing occur on the surface of the pad, so repeatability of polishing performances cannot be expected. In this paper, CMP pad with microstructure was made using micro-molding technology and repeatability of ILD(interlayer dielectric) CMP performances and was evaluated.

  • PDF

Fiber network with superhydrophilic Si-DLC coating

  • Kim, Seong-Jin;Mun, Myeong-Un;Lee, Gwang-Ryeol;Kim, Ho-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.363-363
    • /
    • 2010
  • The high capillarity of a plastic fiber network having superhydrophilic Si-DLC coating is studied. Although the superhydrophilic surface maximize wetting ability on the flat surface, there remains a requirement for the more wettable surface for various applications such as air-filters or liquid-filters. In this research, the PET non-woven fabric surface was realized by superhydrophilic coating. PTE non-woven fabric network was chosen due to its micro-pore structure, cheap price, and productivity. Superhydrophobic fiber network was prepared with a coating of oxgyen plasma treated Si-DLC films using plasma-enhanced chemical vapor deposition (PECVD). We first fabricated superhydrophilic fabric structure by using a polyethylene terephthalate (PET) non-woven fabric (NWF) coated with a nanostructured films of the Si-incorporated diamond-like carbon (Si-DLC) followed by the plasma dry etching with oxygen. The Si-DLC with oxygen plasma etching becomes a superhydrophilic and the Si-DLC coating have several advantages of easy coating procedure at room temperature, strong mechanical performance, and long-lasting property in superhydrophilicity. It was found that the superhydrophobic fiber network shows better wicking ability through micro-pores and enables water to have much faster spreading speed than merely superhydrophilic surface. Here, capillarity on superhydrophilic fabric structure is investigated from the spreading pattern of water flowing on the vertical surface in a gravitational field. As water flows on vertical flat solid surface always fall down in gravitational direction (i.e. gravity dominant flow), while water flows on vertical superhydrophilic fabric surface showed the capillary dominant spreading.

  • PDF

Fabrication and High-temerature Mechanical Property of Liquid-Phase-Sintered SiC (액상소결 탄화규소 세라믹스의 제조 및 고온기계적 특성)

  • Lee, Moonhee;Kim, Sungwon;Lee, Jongho;Hwang, SeungKuk;Gwak, Jaehwan;Lee, Jinkyung;Lee, Sangpill
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.669-674
    • /
    • 2020
  • Liquid-phase-sintered (LPS) SiC materials were briefly examined with their microstructure and mechanical property. Especially, effect of high-temperature exposure on the tendency of fracture toughness of LPS-SiC were introduced. The LPS-SiC was fabricated in hot-press by sintering powder mixture of sub-micron SiC and sintering additives of Al2O3-Y2O3. LPS-SiC represented dense morphology and SiC grain-growth with some amount of micro-pores and clustered additives as pore-filling. The strength of LPS-SiC might affected by distribution of micro-pores. LPS-SiC tended to decrease fracture toughness depending on increasing exposure temperature and time.

Influence of Current Density on Corrosion Properties of AZ91 Mg Alloy Coated by Plasma Electrolytic Oxidation Method (인가전류밀도에 따른 플라즈마 전해산화코팅된 AZ91 마그네슘 합금의 내식성 변화)

  • Lee, Byung Uk;Hwang, In Jun;Lee, Jae Sik;Ko, Young Gun;Shin, Dong Hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.601-607
    • /
    • 2011
  • The study investigated the influence of current density on the corrosion-protection properties of an AZ91 Mg alloy subjected to plasma electrolytic oxidation coating. The present coatings were carried out under an AC condition at three different current densities, i.e., 100, 150, and $200mA/cm^2$. From microstructural observations, the micro cracks connecting each micro pore were pronounced on the oxide surface of the samples coated at current densities higher than $150mA/cm^2$ since increasing the current density in this study led to an increment in the relative volume fraction of the MgO compound. Based on potentio dynamic polarization and immersion tests, the sample coated at a current density of $100mA/cm^2$ showed superior corrosion resistance.

Experimental Study About Properties of Limestone-calcined-clay Cement (LC3) Concrete Under High Temperature (석회석 소성 점토 시멘트(LC3) 페이스트의 고온 내화성능에 관한 연구)

  • Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.133-134
    • /
    • 2021
  • Limestone-calcined clay-Cement (LC3) concrete provides a solution for sustainability, durability, and profitability of concrete industry. This study shows experimental studies of the macro properties (residual compressive strength), the meso properties (mesoscopic images), and micro properties (thermogravimetric (TG) analysis, X-ray powder diffraction (XRD), FTIR spectra, Raman spectra, Mercury intrusion porosimetry, and SEM) of LC3 paste with various mixtures and at high elevated temperatures (20 ℃, 300 ℃, 550 ℃ and 900 ℃). We find (1) Regarding to macro properties, LC3 cementitious materials are at a disadvantage in compressive strength when the temperature is higher than 300 ℃. (2) Regarding to meso properties, when the temperature reached 550 ℃, all samples generated more meso cracks. (3) Regarding to micro properties, first, as the substitution amount increases, its CH content decreases significantly; second, at 900 ℃, for samples with calcined clay, a large amount of gehlenite crystalline phase was found; third, at elevated temperatures (20 ℃, 300 ℃, 550 ℃ and 900 ℃), there is a linear relationship between the residual compressive strength and the cumulative pore volume; fourth, at 900 ℃, a large amount of dicalcium silicate was generated, and damage cracks were more pronounced. The experimental results of this study are valuable of material design of fire resistance of LC3 concrete.

  • PDF

Influence of the Duty Cycle on the Characteristics of Al2O3 Coatings Formed on the Al-1050 by Plasma Electrolytic Oxidation (Al-1050 위에 플라즈마 전해 산화법으로 형성된 Al2O3 피막 특성에 미치는 듀티사이클의 영향)

  • Nam, Kyung-Su;Moon, Jung-In;Kongsy, Phimmavong;Song, Jeong-Hwan;Lim, Dae-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.108-115
    • /
    • 2013
  • Oxide coatings were prepared on Al-1050 substrates by an environment-friendly plasma electrolytic oxidation (PEO) process using an electrolytic solution of $Na_2SiO_3$ (8 g/L) and NaOH (3 g/L). The effects of three different duty cycles (20%, 40%, and 60%) and frequencies (50 Hz, 200 Hz, and 800 Hz) on the structure and micro-hardness of the oxide coatings were investigated. XRD analysis revealed that the oxides were mainly composed of ${\alpha}-Al_2O_3$, ${\gamma}-Al_2O_3$, and mullite. The proportion of each crystalline phase depended on various electrical parameters, such as duty cycle and frequency. SEM images indicated that the oxide coatings formed at a 60% duty cycle exhibited relatively coarser surfaces with larger pore sizes and sintering particles. However, the oxides prepared at a 20% duty cycle showed relatively smooth surfaces. The PEO treatment also resulted in a strong adhesion between the oxide coating and the substrate. The oxide coatings were found to improve the micro-hardness with the increase of duty cycle. The structural and physical properties of the oxide coatings were affected by the duty cycles.

The Electrical Properties of the Laminated PTC Thermistor for Micro Circuit Protection as a Function of Starting Material and Sr Addition (초소형 회로보호용 적층 PTC 써미스터의 출발원료 및 Sr 첨가에 따른 전기적 특성)

  • Lee, Mi-Jai;Kim, Bit-Nan;Hwang, Jong-Hee;Kim, Jin-Ho;Park, Seong-Chul;Song, Jun-Baek
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.525-530
    • /
    • 2011
  • We investigated the electrical properties the starting material and sintering condition on the laminated PTC thermistor for micro circuit protection. The influences of $BaTiO_3$ powder with the 0.3 and 0.45 ${\mu}m$ size and the electrical characteristics (Ba,Sr)$TiO_3$ sintered at 1350~1400$^{\circ}C$ for 2 h in a reducing atmosphere (1% $H_2/N_2$). The sintered (Ba,Sr)$TiO_3$ was increased pore and the grain size was decreased according to increasing Sr additions. In relative permittivity, the phase transition temperature of (Ba,Sr)$TiO_3$ was decreased for 2.5$^{\circ}C$ according to increasing 0.01 mole Sr additions, and the phase transition dose not appeared about 0.3 mole Sr addition. The (Ba,Sr)$TiO_3$ was show the low resistance from 0.01 mole to 0.05 mole by Sr addition, regardless of sintering temperature. The (Ba,Sr)$TiO_3$ was show $10^2$ jump order at 0.1 and 0.2 mole Sr addition, and PTCR of the sintered $(Ba_{0.7}Sr_{0.3})TiO_3$ does not appeared about 0.3 mole Sr addition, regardless of the sintering temperature and starting material size.