• 제목/요약/키워드: Micro mechanical machining

검색결과 282건 처리시간 0.025초

마이크로 밀링과 X-선 리소그래피 공정을 이용한 다층 마이크로 구조물 제작 공정 개발 (Development of a Novel Fabrication Process for Multi-layered Microstructures using a Micro Milling and Deep X-ray Lithography)

  • 김종현;장석상;임근배
    • 한국정밀공학회지
    • /
    • 제31권3호
    • /
    • pp.269-275
    • /
    • 2014
  • Conventional machining technologies such as a milling process have limitations in accuracy to fabricate microstructures. Deep X-ray lithography using the synchrotron radiation is a promising micromachining process with an excellent accuracy, whereas there are difficulties in the fabrication of multi-layered structures. Therefore, it is mainly used for fabricating simple mono-layered microstructures with a high aspect ratio. In this study, a novel technology for fabricating multi-layered microstructures is proposed by combining two processes. In advance, an X-ray resist material is cut and machined into various shapes and heights by the micro milling process. Subsequent X-ray irradiation process facilitates the fabrication of multi-layered microstructures. The proposed technology can overcome the limitation of the pattern accuracy in conventional milling process and the difficulty of the multi-layered machining in x-ray process. The usefulness of the proposed technology is demonstrated in this study by applying the technique in the realization of various multi-layered microstructures.

Estimation of Material Removal Volume of a Micro-EDM Drilled Hole Using Discharge Pulse Monitoring

  • Jung, Jae-Won;Ko, Seok-Hoon;Jeong, Young-Hun;Min, Byung-Kwon;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권4호
    • /
    • pp.45-49
    • /
    • 2007
  • When drilling using electrical-discharge machining (EDM), severe electrode wear makes in-process measurements of the depth of the drilled hole and the volume of material removed impossible. To estimate the volume of material removed a reliable real-time discharge pulse counting method is proposed by assuming that the volume removed in EDM is proportional to the number of discharge pulses from an iso-energy pulse generator. The geometry of machined holes, including depths and cross-sectional profiles, is estimated using geometric analysis. A proportional relationship between the volume of material removed and the number of discharge pulses was developed and verified by experiments.

커버 글래스 엣지 가공을 위한 다이아몬드 입자 전착 공구 제작 및 가공성 평가 (Fabrication and Evaluation of Machinability of Diamond Particle Electroplating Tool for Cover-Glass Edge Machining)

  • 홍광표;윤호섭;조명우
    • Design & Manufacturing
    • /
    • 제11권1호
    • /
    • pp.1-6
    • /
    • 2017
  • In these days, due to generalization of using smart mobile phone and wearable device such as smart watch, demand of Cover-glass and touch screen panel for protecting display increases. With increasing the demand of Cover-glass, slimming technique is promising for weight lightening, zero bezel. Cover-glass produced by this technique is required to decreasing thickness with increase strength. In the Cover-glass manufacturing process, mechanical processing and chemical processing has improve in the strength. Generally, Diamond electrodeposition wheel is used in mechanical process. Reinforced glass with the characteristics of the brittle and high hardness was manufactured by using a diamond electrodeposition wheel. At this time, Because of surface of the tool present non-uniform distribution of diamond particle, it has generate Loading of wheel and it has been decrease life of grinding tool, efficiency of grinding, quality and shape accuracy of workpiece. Thus Research is needed to controling particle distribution of diamond electrodeposition wheel uniformly. And it is necessary to study micro hole machining such as proximity senser hole, speaker hole positioned Cover-glass. Reinforced glass with the characteristics of the brittle and high hardness is difficult to machining. Processing of reinforced glass have generated wear of tool, micro cracks. Also, it is decreasing shape accuracy. In this paper, We conducted a study on how to control particle distribution uniformly about the diamond tool manufactured using elecetodeposition processing. It analyzed the factors that affect the arrangement of the particles in the electrodeposition process by design of experiment. And There is produced the grinding tool, which derives an optimum deposition conditions, for processing Cover-glass edge and the machinability was evaluated.

저온 분사 적층과 절삭가공을 이용한 금형보수 사례연구 (Repair of Mold by Cold Spray Deposition and Mechanical Machining)

  • 강혁진;정우균;추원식;안성훈
    • 한국정밀공학회지
    • /
    • 제23권7호
    • /
    • pp.101-107
    • /
    • 2006
  • Cold gas dynamic spray or cold spray is a novel manufacturing method for coatings. Cold spray is a high rate and direct material deposition process that utilizes the kinetic energy of particles sprayed at high velocity (300-1,200m/s). In this research, a technique to repair the damaged mold by cold spray deposition and mechanical machining was proposed. An aluminum 6061 mold with three-dimensional surface was fabricated, intentionally damaged and material-added by cold spray, and its original geometry was re-obtained successfully by Computer Numerical Control (CNC) machining. To investigate deformation of material caused by cold spray, deposition was conducted on thin aluminum plates ($100mm{\times}100mm{\times}3mm$). The average deformation of the plates was $205{\sim}290{\mu}m$ by Coordinate Measurement Machine (CMM). In addition, the cross section of deposited layer was analyzed by scanning electron microscopy (SEM). To compare variation of hardness, Vickers hardness was measured by micro-hardness tester.

미세 레이저 가공의 표면코팅 후 전해 에칭 (Laser Micro Machining and Electrochemical Etching After Surface Coating)

  • 김태풍;박민수
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.638-643
    • /
    • 2013
  • Laser beam machining (LBM) is fast, contactless and able to machine various materials. So it is used to cut metal, drill holes, weld or pattern the imprinted surface. However, after LBM, there still leave burrs and recast layers around the machined area. In order to remove these unwanted parts, LBM process often uses electrochemical etching (ECE). But, the total thickness of workpiece is reduced because the etching process removes not only burrs and recast layers, but also the entire surface. In this paper, surface coating was performed using enamel after LBM on metal. The recast layer can be selectively removed without decreasing total thickness. Comparing with LBM process only, the surface quality of enamel coating process was better than that. And edge shape was also maintained after ECE.

전해연마를 적용한 미세 마이크로 니들의 표면 향상에 대한 연구 (A study on the Surface Improvement of Fine-Micro Needles Applying Electrochemical Polishing)

  • 정성택;김현정;위은찬;공정식;백승엽
    • Design & Manufacturing
    • /
    • 제13권3호
    • /
    • pp.48-52
    • /
    • 2019
  • As the consumer market in the mold, automation and aerospace industries grows, the demand for chemical machining using on electrochemical polishing increases. To enhance the surface roughness and gloss of the micro-needle, we have studied for an electrochemical polishing. Electrochemical polishing requires the chemical reaction of solution and material according to the electrolyte and electrode. In this study, sulfuric acid(30%), phosphoric acid(50%), and DI-water(20%)were used as the electrolytic solution, and the electrolytic solution temperature used $58^{\circ}C$. Electrochemical polishing was carried out in experimental conditions, and the micro-needle experiment was carried out from the basic experiment to obtain the experimental conditions. Experimental results show that as the voltage and current increase, the surface roughness improved and the gloss is improved. So, the best result for this experiment was obtained in condition 6, which improved micro-needle.

마이크로 압축성형 공정을 이용한 굴절/회절용 마이크로 광부품 성형 (Fabrication of Refractive/Diffractive Micro-Optical Elements Using Micro-Compression Molding)

  • 문수동;안수호;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.200-203
    • /
    • 2001
  • Micromolding methods such as micro-injection molding and micro-compression molding are most suitable for mass production of plastic micro-optics with low cost. In this study, plastic micro-optical components, such as refractive microlenses and diffractive optical elements(DOEs) with various grating patterns, were fabricated using micro-compression molding process. The mold inserts were made by ultrapricision mechanical machining and silicon etching. A micro compression molding system was designed and developed. Polymer powders were used as molded materials. Various defects found during molding were analyzed and the process was optimized experimentally by controlling the governing process parameters such as histories of mold temperature and compression pressure. Mim lenses of hemispherical shape with $250{\mu}m$ diameter were fabricated. The blazed and 4 stepped DOEs with $24{\mu}m$ pitch and $5{\mu}m$ depth were also fabricated. Optical and geometrical properties of plastic molded parts were tested by interferometric technique.

  • PDF

전자기 전항을 이용한 압전 구동방식 마이크로 펌프의 유동 및 성능 특성에 관한 수치해석적 연구 (A Numerical Study on the Flow and Performance Characteristics of a Piezoelectric Micropump with Electromagnetic Resistance for Electrically Conducting Fluids)

  • 안용준;최청렬;김창녕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2788-2793
    • /
    • 2008
  • A numerical analysis has been conducted for flow characteristics and performance of a micropump with piezodisk and MHD(Magnetohydrodynamics) fluid. Various micro systems which could not be considered in the past have been recently growing with the development of MEMS(Micro Electro Mechanical System) and micro machining technology. Especially, micropumps, essential part of micro fluidic devices, are being lively studies by many researchers. In the present study, the piezo electric micropump with electromagnetic resistance for electrically conducting fluids is considered. The prescribed grid deformation method is used for the displacement of the membrane. The change of the performance of the micropump and flow characteristics of the electrically conducting fluid with the magnitude of the magnetic fields, duct size, the position of the inlet and outlet duct are investigated in the present study.

  • PDF

마이크로 프리즘 패턴의 엔드밀링에서 공구 마모와 정밀도 (Tool Wear Rate and Accuracy of Patterns in Micro Prismatic End-milling)

  • 안주은;이정희;곽재섭
    • 한국기계가공학회지
    • /
    • 제17권3호
    • /
    • pp.1-6
    • /
    • 2018
  • Micro prism pattern is applying in order to get increase of luminance, control the light, and so forth especially in optics and display industry. Most patterns are fabricated by lithography, planning, and EDM, but they have limitations on the productivity or the unit cost of produce. However, ultra precision mold is one of the processes able to replace it, and assure high productivity required by industries. In this investigation, micro prismatic end-milling is suggested in order to fabricate the pattern effectively. Micro prism pattern having $100{\mu}m$ of pitch and height was machined on STD-11. After machining, the flank and boundary wear on micro end mill were measured and analyzed, as well as burr formation and dimensional accuracy of fabricated pattern were evaluated. Thus the optimal cutting conditions were derived.

마이크로 머시닝으로 제작한 기계적 가이드를 갖는 정전용량 선형 인코더 (Micro-Machined Capacitive Linear Encoder with a Mechanical Guide)

  • 강대실;문원규
    • 센서학회지
    • /
    • 제21권6호
    • /
    • pp.440-445
    • /
    • 2012
  • Contact-type Linear Encoder-like Capacitive Displacement Sensor (CLECDiS) is a novel displacement sensor which has wide measurable range with high resolution. The sensor, however, is very sensitive to relative rotational alignment between stator and mover of the sensor as well as its displacement. In addition to, there can be some disturbances in the relative rotational alignment, so some noises occur in the sensor's output signal by the disturbances. This negative effect of the high sensitivity may become larger as increasing sensitivity. Therefore, this negative effect of the high sensitivity has to be compensated and reduced to achieve nanometer resolution of the sensor. In this study, a new type capacitive linear encoder with a mechanical guide is presented to reduce the relative rotational alignment problem. The presented method is not only to reduce the alignment problem, but also to assemble the sensor to the stage conveniently. The method is based on a new type CLECDiS that has mechanical guide autonomously. In the presented sensor, when the device is fabricated by micro-machining, the guide-rail is also fabricated on the surface of the sensor. By the direct fabrication of the guide-rail with high precision micro-machining, errors of the guide-rail can be reduced significantly. In addition, a manual yaw alignment is not required to obtain large magnitude of the output signal after the assembly of the sensor and the stage. The sensor movement is going to follow the guide-rail automatically. The prototype sensor was fabricated using the presented method, and we verify the feasibility experimentally.