• Title/Summary/Keyword: Micro grooves

Search Result 98, Processing Time 0.024 seconds

A Control of Pretilt Angles for Homeotropic Aligned NLC on the SiOx Thin Film Surface by Electron Beam Evaporation

  • Kang, Hyung-Ku;Han, Jin-Woo;Kang, Soo-Hee;Kim, Jong-Hwan;Kim, Oung-Hwan;Hwang, Jeoung-Yeon;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.272-275
    • /
    • 2005
  • We studied the control of pretilt angles for homeotropic aligned nematic liquid crystal (NLC) on SiOx thin film surface by $45^{\circ}$ evaporation method with electron beam system. The uniform vertical LC alignment on. the SiOx thin film surfaces with electron beam evaporation was achieved. It is considered that the LC alignment on SiOx thin film by $45^{\circ}$ electron beam evaporation is attributed to elastic interaction between LC molecules and micro-grooves at the SiOx thin film surface created by evaporation. The pretilt angles of about $3.5^{\circ}$ in aligned NLC on SiOx thin film surfaces by electron beam evaporation of $45^{\circ}$ were measured. Consequently, the high pretilt angles of the NLC on the SiOx thin film by $45^{\circ}$ oblique electron beam evaporation method can be achieved.

Liquid Crystal Aligning Capabilities for Nematic Liquid Crystal on the ZrOx Thin Film Layer with E-beam Evaporation

  • Kim, Mi-Jung;Han, Jin-Woo;Kim, Young-Hwan;Kim, Byoung-Yong;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.378-378
    • /
    • 2007
  • In this study, liquid crystal (LC) aligning capabilities for homeotropic alignment on the $ZrO_x$ thin film by electron beam evaporation method were investigated. Also, the control of pretilt angles and thermal stabilities of the NLC treated on $ZrO_x$ thin film were investigated. The uniform LC alignment on the $ZrO_x$ thin film surfaces and good thermal stabilities with electron beam evaporation can be achieved. It is considerated that the LC alignment on the $ZrO_x$ thin film by electron beam evaporation is attributed to elastic interaction between LC molecules and micro-grooves at the $ZrO_x$ thin film surface created by evaporation. In addition, it can be achieved the good electro-optical (EO) properties of the VA-LCD on $ZrO_x$ thin film layer with. oblique electron beam evaporation.

  • PDF

Fabrication and Evaluation of the MXene-Based Wearable Sensor (MXene 기반의 웨어러블 센서 제작 및 평가)

  • Youngsam Yoon;Hojin Lee;Goeun Cha;Tae Wook Kim;Jongsung Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.295-299
    • /
    • 2023
  • Herein, we propose a simple fabrication method for MXene-coated V-groove sensors for applications. To enhance the sensitivity of this sensor, we applied MXene particles, instead of conventional metal layers, as a sensing material on the sensor's surface. This allows for an easier fabrication, as well as higher sensitivity of the sensor compared to those of our previously demonstrated metal-based V-groove sensor. Additionally, polyurethane-acrylate, a UV-curable liquid polymer, can be easily applied using micro-electromechanical systems-based surface-texture micromachining. The sensor sensitivity is approximately 0.08 /mm, and it can be improved by increasing the number of V-grooves. We believe that the proposed MXene-based wearable sensor offers a great potential in detecting various types of motions characteristic of human activities.

A Study on Tensile Restraint Crack Critical Stress Characteristcs of Gravity-Wet-Type Underwater Welded Joints (중력식 습식 수중용접부의 인강구속균열 임계응력 특성에 관한 연구)

  • O, Se-Gyu;Gang, Mun-Ho;Han, Sang-Deok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.61-65
    • /
    • 1987
  • In this study, the characteristics of TRC (tensile restraint crack) critical stress in the gravity type underwater wet welding process and in the in-air welding have been investigated for Y, y and 45$^{\circ}$r grooves using the KR Grade A-3 steel plates and the E4303 covered electrodes. The following results were obtained: (1) In the TRC tests, the initial critical stress of Y groove is higher than those of the 45$^{\circ}$r single bebel grooves in both in-air and underwater weldings, and the cold fracture sensitivity is higher in the underwater welding than in the in-air welding. (2) The hardness of underwater weld metal is the highest in heat affected zone is about Hk 365 in the in-air weld but Hk 670 in the underwater weld which is higher for cooling speed is more rapid, resulting in the lower critical stress by increase of fracture sensitivity. (3) The diffusible hydrogen quantity for 48 hours is about 18cc/100g-weld-metal in the in-air welding but 48cc/100g-weld-metal in the underwater welding. So that, in the case of underwater welding the diffusible hydrogen penetrates about 3 times more than that in the in-air welding.

  • PDF

A Study on Tensile Restraint Crack Critical Stress Characteristcs of Gravity-Wet-Type Underwater Welded Joints (중력식 습식 수중용접부의 인강구속균열 임계응력 특성에 관한 연구)

  • Sae Kyoo Oh;Moon Ho Kang;Sang Deok Han
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.15-15
    • /
    • 1987
  • In this study, the characteristics of TRC (tensile restraint crack) critical stress in the gravity type underwater wet welding process and in the in-air welding have been investigated for Y, y and 45°r grooves using the KR Grade A-3 steel plates and the E4303 covered electrodes. The following results were obtained: (1) In the TRC tests, the initial critical stress of Y groove is higher than those of the 45°r single bebel grooves in both in-air and underwater weldings, and the cold fracture sensitivity is higher in the underwater welding than in the in-air welding. (2) The hardness of underwater weld metal is the highest in heat affected zone is about Hk 365 in the in-air weld but Hk 670 in the underwater weld which is higher for cooling speed is more rapid, resulting in the lower critical stress by increase of fracture sensitivity. (3) The diffusible hydrogen quantity for 48 hours is about 18cc/100g-weld-metal in the in-air welding but 48cc/100g-weld-metal in the underwater welding. So that, in the case of underwater welding the diffusible hydrogen penetrates about 3 times more than that in the in-air welding.

LC Aligning Properties for Homeotropic Alignment of NLC on the SiOx Thin Film as Incident Angle of Electron Beam Evaporation Angle

  • Kim, Jong-Hwan;Kang, Hyung-Ku;Han, Jin-Woo;Kang, Soo-Hee;Kim, Young-Hwan;Hwang, Jeoung-Yeon;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.21-25
    • /
    • 2006
  • In this study, liquid crystal (LC) aligning properties for homeotropic alignment on the $SiO_x$ thin film by electron beam evaporation method with electron beam system in accordance with the evaporation angles were investigated. Also, the control of pretilt angles homeotropic aligned LC on $SiO_x$ thin film as the function of the evaporation angles were studied. The uniform vertical LC alignment on the $SiO_x$ thin film surfaces with electron beam evaporation was achieved with all of the thin film angle conditions. It is considerated that the LC alignment on the $SiO_x$ thin film by electron beam evaporation is attributed to elastic interaction between LC molecules and micro-grooves at the $SiO_x$ thin film surface created by evaporation. The values of the pretilt angles according to the evaporation angle were from about $0.7^{\circ}$ to about $3.4^{\circ}$. The highest pretilt angles of about $3.4^{\circ}$ in aligned NLC on the $SiO_x$ thin film surfaces by electron beam evaporation were measured under the condition of $45^{\circ}$. Also, good LC alignment states on the treated $SiO_x$ thin film layer by electron beam evaporation were observed at annealing temperature of $250^{\circ}C$. Consequently, the high pretilt angle and the good thermal stability of LC alignment on the $SiO_x$ thin film by electron beam evaporation can be achieved.

Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 2 - Effect of Groove Depth (미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제2보 - 그루브 깊이의 영향)

  • Park, TaeJo;Jang, InGyu
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.382-388
    • /
    • 2019
  • It is currently well known that surface textures act as lubricant reservoirs, entrap wear debris, and hydrodynamic bearings, which can lead to certain increases in load-carrying capacities. Until recently, the vast majority of research has focused on parallel sliding machine components such as thrust bearings, mechanical face seals, piston rings, etc. However, most sliding bearings have a convergent film shape in the sliding direction and their hydrodynamic pressure is mainly generated by the wedge action. Following the first part of the present study that investigates the effect of groove position on the lubrication performances of inclined slider bearings, this paper focuses on the effects of groove depths and film thicknesses. Using a commercial computational fluid dynamics (CFD) code, FLUENT, the continuity and Navier-Stokes equations are numerically analyzed. The results show that the film thickness and groove depth have a significant influence on the pressure distribution. The maximum pressure occurs at the groove depth where the vortex is found and, as the depth increases, the pressure decreases. There is also a groove depth to maximize the supporting load with the film thickness. The friction force acting on the slider decreases with deeper grooves. Therefore, properly designed groove depths, depending on the operating conditions, can improve the load-carrying capacity of inclined slider bearings as compared to the bearings without a groove.

Effect of Groove Shapes on Mechanical Properties of STS316L Repaired by Direct Energy Deposition (직접 에너지 적층을 통한 STS316L 소재의 보수 공정에서 그루브 형상이 기계적 특성에 미치는 효과)

  • Oh, W.J.;Son, Y.;Son, J.Y.;Shin, G.W.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.2
    • /
    • pp.103-112
    • /
    • 2020
  • This study explores the effects of different pre-machining conditions on the deposition characteristics and mechanical properties of austenitic stainless steel samples repaired using direct energy deposition (DED). In the DED repair process, defects such as pores and cracks can occur at the interface between the substrate and deposited material. In this study, we varied the shape of the pre-machined zone for repair in order to prevent cracks from occurring at the slope surface. After repairs by the DED process, macro-scale cracks were observed in samples that had been pre-machined with elliptic and trapezoidal grooves. In addition, it was not possible to completely prevent micro-crack generation on the sloped interfaces, even in the capsule-type grooved sample. From observation of the fracture surfaces, it was found that the cracks around the inclined interface were due to a lack of fusion between the substrate and the powder material, which led to low tensile properties. The specimen with the capsule-type groove provided the highest tensile strength and elongation (respective of 46% and 571% compared to the trapezoidal grooved specimen). However, the tensile properties were degraded compared to the non-repaired specimen (as-hot rolled material). The fracture characteristics of the repaired specimens were determined by the cracks at the sloped interfaces. These cracks grew and coalesced with each other to form macro-cracks, they then coalesced with other cracks and propagated to the substrate, causing final fracture.

Scanning Electron Microscopic Study of the Effects of Citric Acid on the Change of Implant Surface According to Application Time (구연산의 적용시간에 따른 임플란트 표면변화에 대한 주사전자현미경적 연구)

  • Song, Woo-Seok;Kwon, Young-Hyuk;Lee, Man-Sup;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.697-709
    • /
    • 2002
  • The present study was performed to evaluate the effect of citric acid on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, titanium plasma-sprayed surface, and sand-blasted, large grit, acid etched surface were utilized. Implant surface was rubbed with pH 1 citric acid for $\frac{1}{2}$ min., 1 min., 1 $\frac{1}{2}$ min., 2 min., and 3min, respeaively in the test group and implant surface was not treated in the control group. Then, the specimens were processed for scanning electron microscopic observation. The following results were obtained. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. In titanium plasma-sprayed surfaces, round or amorphous particles were deposited irregularly. The irregularity of titanium plasma-sprayed surfaces conditioned with pH 1 citric acid was lessened and the cracks were increased relative to the application time of pH 1 citric acid. 3. Sand-blasted, large grit, acid etched surfaces showed the macro/micro double roughness. The application of pH 1 citric acid didn't change the characteristics of the sand-blasted, large grit, acid etched surfaces. In conclusion, the application of pH 1 citric acid to titanium plasma-sprayed surface is improper. And pure titanium machined surface implants and sand-blasted, large grit, acid etched surface implants can he treated with pH 1 citric acid for peri-implantitis treatment if the detoxification of these surfaces could be evaluated.

Micromorphometric change of implant surface conditioned with tetracycline-HCI : $FBR^{(R)}$ and CeliNest surface (표면처리 시간에 따른 임프란트 미세구조의 변화 : $FBR^{(R)}$과 CellNest 표면 임프란트)

  • Chang, Dong-Wook;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.717-729
    • /
    • 2006
  • The present study was performed to evaluate the effect of tetracycline-BCL on the change of implant surface microstructure according to application time. Implant with pure titanium machined surface, double coated $FBR^{(R)}$ surface and oxidized CellNest surface were utilized. Implant surface was rubbed with $50mg/m{\ell}$ tetracycline-BCL solution for ${\frac{1}{2}}$, 1, $1{\frac{1}{2}}$, 2 and $2{\frac{1}{2}}$min. respectively in the test group. Then, specimens were processed for scanning electron microscopic observation. The results of this study were as follows. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. The double coated $FBR^{(R)}$ surfaces showed fine crystalline structures. The roughness of surfaces conditioned with tetracycline-BCL was lessened relative to the application time. 3. The oxidized CellNest surfaces showed the porous structures. The surface conditioning with tetracycline-BCI influenced on its micro-morphology. In conclusion, the detoxification of the affected implant surface with $50mg/m{\ell}$ tetracycline-BCL should be applied respectively with different time according to various implant surfaces.