• Title/Summary/Keyword: Micro elements

Search Result 429, Processing Time 0.024 seconds

Recrystallization Behavior in the Two-Phase (α+γ) Region of Micro-Alloyed Steels (페라이트-오스테나이트 2상역 온도에서 미량합금 원소가 첨가된 탄소강의 재결정 거동)

  • Lee, Seung-Yong;Kim, Ji-Yeon;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.583-589
    • /
    • 2016
  • In this study, recrystallization behaviors in the two-phase (${\alpha}+{\gamma}$) region of micro-alloyed steels such as Base, Nb, TiNbV and CAlN were investigated in terms of flow stress, microstructure and associated grain boundary characteristics. The flow stress of all specimens reached peak stress and gradually decreased, which means that recrystallization or recovery of proeutectoid deformed ferrite and recovery or transformation to ferrite of deformed austenite occurred by thermal activation. The precipitation of carbide or nitride via the addition of micro-alloying elements, because it reduced prior austenite grain size upon austenitization, promoted transformation of austenite to ferrite and increased flow stress. The strain-induced precipitation under deformation in the two-phase region, on the other hand, increased the flow stress when the micro-alloying elements were dissolved during austenitization. The recrystallization of the Nb specimen was more effectively retarded than that of the TiNbV specimen during deformation in the two-phase region.

Effect of Machining Conditions on machining gap in Micro Electrochemical Drilling (미세 전해 구멍 가공에서의 가긍 조건에 따른 가공 간극 변화 특성)

  • Kim, Bo-Hyun;Park, Byung-Jin;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.163-169
    • /
    • 2005
  • Micro hole is ode of basic elements for micro device or micro parts. Micro electrochemical machining (ECM) can be applied to the machining of micro holes less than 50 ${\mu}m$ in diameter, which it is not easy to apply other techniques to. For the machining of passivating metals such as stainless steel, machining conditions should be chosen carefully to prevent a passive layer. The machining conditions also affect the machining resolution, In this paper, machining characteristics of micro ECM were investigated according to machining conditions such as electrolyte concentration and pulse conditions. From the investigation, optimal machining conditions were suggested for micro ECM of stainless steel.

Design of Micro-Machining System for Micro/Meso Mechanical Component (Micro/Meso부품 대응형 마이크로 기계가공시스템 기술 연구)

  • Park J.K.;Kyung J.H.;Ro S.K.;Kim B.S.;Park J.H.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.377-382
    • /
    • 2005
  • This paper describes the design of micro machine tools system for mechanical machining of micro/meso scale mechanical parts. The micro machining systems such as $\mu-Late$, $\mu-milling/drilling$ machine and $\mu-grinding$ machine are the basic elements constructing $\mu-factory$ which gains more attention recently because of increasing needs of mico and nano-parts in various industrial and medical area. A miniaturized 3-axis milling machine with VCM stage and air spindle and palm-top size micro-late are designed, and air bearing stage and stepwise linear motion system with PZT are studied for motion system. The micro cutting characteristics are investigated experimentally, and reconfigurable machine structures are also considered.

  • PDF

A New Inter-group Handoff Scheme in Micro/Pico Cellular System using Optical Fiber Feeder

  • Chung Young uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3A
    • /
    • pp.203-208
    • /
    • 2005
  • To solve the cost problem of micro/picocell system, the fiber-optic cellular system was proposed. In this system, all channel elements are managed in Central Station, not in each base station. Also, all channel elements in a system can be dynamically assigned when the Spectrum Delivery Switch (SDS) is used. In this paper, we propose and analyze a new intergroup handoff scheme in the fiber-optic cellular system. The proposed scheme supports handoff with keeping current channel. Performance is evaluated with respect to the blocking probability and the handoff refused probability in both systems with SDS and without SDS. The numerical results show that the proposed scheme provides better performance than conventional soft handoff scheme.

Determining Two-Sided Surface Profiles of Micro-Optical Elements Using a Dual-Wavelength Digital Holographic Microscope With Liquids

  • Lee, Hong Seok;Shin, Sanghoon;Lee, Heonjoo;Yu, Younghun
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.495-499
    • /
    • 2014
  • In this paper, a method is proposed for simultaneously measuring the front and back surface profiles of transparent micro-optical components. The proposed method combines a dual-wavelength digital holographic microscope with liquids to record holograms at different wavelengths, and then numerically reconstructs the three-dimensional phase information to image the front and back sides of the sample. A theoretical model is proposed to determine the surface information, and imaging of an achromatic lens is demonstrated experimentally. Unlike conventional interferometry, our proposed method supports nondestructive measurement and direct observation of both front and back profiles of micro-optical elements.

Genome-Wide Identification and Classification of MicroRNAs Derived from Repetitive Elements

  • Gim, Jeong-An;Ha, Hong-Seok;Ahn, Kung;Kim, Dae-Soo;Kim, Heui-Soo
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.261-267
    • /
    • 2014
  • MicroRNAs (miRNAs) are known for their role in mRNA silencing via interference pathways. Repetitive elements (REs) share several characteristics with endogenous precursor miRNAs. In this study, 406 previously identified and 1,494 novel RE-derived miRNAs were sorted from the GENCODE v.19 database using the RepeatMasker program. They were divided into six major types, based on their genomic structure. More novel RE-derived miRNAs were confirmed than identified as RE-derived miRNAs. In conclusion, many miRNAs have not yet been identified, most of which are derived from REs.

Optimal Design and Experiment of One Chip Type SAW Duplexers using Micro_Strip Line Lumped Elements (마이크로 스트립라인 집중소자를 이용한 일체형 SAW 듀플렉서의 최적설계 및 실험)

  • 이승희;노용래
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.647-655
    • /
    • 2003
  • Commonly used SAW duplexers have a difficulty on manufacture so that a transmission line is printed on the package or an LTCC multi-layer is needed because a quarter-wave transmission line which is a kind of an isolation network is applied to the SAW duplexers. In this study, new structures of one chip type SAW duplexers are proposed. In the proposed structure, Tx and Rx SAW ladder filters and isolation networks are located on a single 36LiTaO$_3$ piezoelectric substrate. The manufacture process is very simple than commonly used product. It is possible to improve tile performance by means of optimizing the micro-strip line lumped elements. It is easy to integrate and modulate with other surrounding components. The optimal design techniques can be applied to other kind of multi-port devices.

Thermal Flow Characteristics of a New Micro Flow Sensor with Multiple Temperature Sensing Elements (다단계 온도 감지막을 가진 마이크로 흐름센서의 열전달 특성)

  • Kim Tae Yong;Chung Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.595-600
    • /
    • 2005
  • A micro flow sensor on silicon substrate allows the fabrication of small components where many different functions can be integrated so that the functionality of the sensors can be increased. Further more, the small size of the elements these sensors can be quite fast. A thermal mass flow sensor measures the asymmetry of temperature profile around the heater which is modulated by the fluid flow. In normal, a mass flow sensor is composed of a central heater and a pair of temperature sensing elements around the heater A new 2-D wide range micro flow sensor structure with three pairs of temperature sensors and a central heater was proposed and numerically simulated by Finite Difference formulation to confirm the feasibility of the flow sensor structure in time domain.

Design of Optical Path for Small Form Factor Optical Disk Drive and Fabrication of Micro-Compensatory Lens (초소형 광 정보 저장 기기를 위한 광 경로 설계 및 마이크로 보정 렌즈 제작)

  • 김홍민;정경성;최우재;박노철;강신일;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.115-118
    • /
    • 2002
  • The purpose of this paper is to design a pick-up for the small form factor optical disk drive and to fabricate a micro-compensatory lens for the pick-up using the micro-compression molding process. At design stage, the optical elements including the objective lens and the compensatory lens are miniaturized. The height of pick-up and free working distance are designed as 2mm and 0.2% respectively. To analyze the fabricated micro-compensatory lens, the system was analyzed using the surface profile of the fabricated micro-compensatory lens and CODE V which is commercial software. The RMS wave front aberration of the system using fabricated micro-compensatory lens is 0.01677λ which is lower than Marechal's criterion, 0.07λ.

  • PDF

Development of a 6 degrees-of-freedom micro stage for ultra precision positioning (초정밀작업을 위한 6자유도 마이크로 스테이지의 개발)

  • Kim, Kyung-Chan;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.372-379
    • /
    • 1998
  • A new 6 degrees-of-freedom micro stage, based on parallel mechanisms and actuated by using piezoelectric elements, has been developed for the application of micro positioning such as semiconductor manufacturing devices, high precision optical measurement systems, and high accurate machining. The micro stage structure consists of a base platform and an upper platform(stage). The base platform can effectively generates planar motion with yaw motion, while the stage can do vertical motion with roll and pitch motions with respect to the base platform. This separated structure has an advantage of less interference among actuators. The forward and inverse kinematics of the micro stage are discussed. Also, through linearization of kinematic equations about an operating point on the assumption that the configuration of the micro stage remains essentially constant throughout a workspace is performed. To maximize the workspace of the stage relative to fixed frame, an optimal design procedure of geometric parameter is shown. Hardware description and a prototype are presented. The prototype is about 150mm in height and its base platform is approximately 94mm in diameter. The workspace of the prototype is obtained by computer simulation. Kinematic calibration procedure of the micro stage and its results are presented.