• Title/Summary/Keyword: Micro element

Search Result 814, Processing Time 0.021 seconds

A Study on the Classification and Application Element of Outdoor Biotop for Environment-friendly Community (친환경 주거를 위한 외부공간의 비오톱 유형 분류 및 적용 항목에 관한 연구)

  • Cho, Dong-Gil;Cho, Tong-Buhm
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.1
    • /
    • pp.57-71
    • /
    • 2007
  • While a concept on biotop or the urgency of its classification systems have been under discussion recently, this study aims to examine outdoor biotop classification systems for environment-friendly community. To this end, the feasibility of creating a biotop in the community and application elements were generated and biotops were classified and categorized. Then, elements that can be applied in consideration of traditional Korean techniques were generated and biotop classification systems and specific components in residential areas were reviewed. As for the result of this study, based on a preliminary draft prepared through literature review, considerations for biotop classification systems were taken into account. Then, based on classification criteria for biotop formats, biotop functions and biotop types, a second-tier classification system was developed. Criteria for biotop formats included surfaces, lines and points while criteria for biotop functions were large cores, small bases, corridors, stepping stones and ecological islands. Criteria for habitat types were divided to include natural forest, developed green areas, lacustrine wetland, palustrine wetland, shrubs, grasslands, linear habitats, vacant plots and practical green areas, which were sub-categorized. As for the biotop classification system, macro-classification divided biotops into three types-space, line and point-based on biotop formats. Meso-classification had five groups and micro-classification had 21 groups based on habitat types. Future studies should focus on the ecological features of each biotop categories generated in this study and their creation and management techniques to find many practical methods to create, protect and manage outdoor biotop for environment-friendly community.

Effect of Pore Structures of a Ti-49.5Ni (at%) Alloy on Bone Cell Adhesion (Ti-49.5Ni (at%)합금의 다공성 구조가 뼈 세포 흡착에 미치는 영향)

  • Im, Yeon-Min;Choi, Jung-Il;Khang, Dong-Woo;Nam, Tae-Hyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.66-70
    • /
    • 2012
  • Ti-Ni alloys are widely used in numerous biomedical applications (e.g., orthodontics, cardiovascular science, orthopaedics) due to their distinctive thermomechanical and mechanical properties, such as the shape memory effect, superelasticity and low elastic modulus. In order to increase the biocompatibility of Ti-Ni alloys, many surface modification techniques, such as the sol-gel technique, plasma immersion ion implantation (PIII), laser surface melting, plasma spraying, and chemical vapor deposition, have been employed. In this study, a Ti-49.5Ni (at%) alloy was electrochemically etched in 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF electrolytes to modify the surface morphology. The morphology, element distribution, crystal structure, roughness and energy of the surface were investigated by scanning electron microscopy (SEM), energy-dispersive Xray spectrometry (EDS), X-ray diffractometry (XRD), atomic force microscopy (AFM) and contact angle analysis. Micro-sized pores were formed on the Ti-49.5Ni (at%) alloy surface by electrochemical etching with 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF. The volume fractions of the pores were increased by increasing the concentration of the HF electrolytes. Depending on the HF concentration, different pore sizes, heights, surface roughness levels, and surface energy levels were obtained. To investigate the osteoblast adhesion of the electrochemically etched Ti-49.5Ni (at%) alloy, a MTT test was performed. The degree of osteoblast adhesion was increased at a high concentration of HF-treated surface structures.

Design of an Energy Harvesting Circuit Using Solar and Vibration Energy with MPPT Control (MPPT 제어기능을 갖는 빛과 진동 에너지를 이용한 에너지 하베스팅 회로 설계)

  • Yoon, Eun-Jung;Hwang, In-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.224-234
    • /
    • 2012
  • This paper describes an energy harvesting circuit using solar and vibration energy with MPPT(Maximum Power Point Tracking) control for micro sensor nodes. The designed circuit employs MPPT control to harvest maximum power available from a PZT vibration element and an integrated solar cell. The harvested energies are simultaneously combined and stored in a storage capacitor, and then managed and transferred into sensor node by PMU(Power Management Unit). MPPT controls are implemented using the linear relationship between the open-circuit voltage of an energy transducer and its MPP(Maximum Power Point) voltage. The proposed circuit is designed in a CMOS 0.18um technology and its functionality has been verified through extensive simulations. The designed energy harvesting circuit and integrated solar cell occupy $2.85mm^2$ and $8mm^2$ respectively.

Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 2. Numerical analysis

  • Gawin, D.;Majorana, C.E.;Pesavento, F.;Schrelfer, B.A.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.203-214
    • /
    • 2005
  • In the Part 1 paper (Gawin, et al. 2005) some experimental results concerning micro-structural tests, permeability measurements and stress-strain tests of four types of High Performance Concrete, exposed to elevated temperatures (up to $700^{\circ}C$) are presented and discussed. On the basis of these experimental results parameters of the constitutive relationships describing influence of damage and temperature upon material intrinsic permeability at high temperature were determined. In this paper the effects of various formulations of damage-permeability coupling on results of computer simulations are analysed and compared with the results obtained by means of the previously proposed approach, that does not take into account the thermo-chemical concrete damage directly. Numerical solutions are obtained using the recently developed fully coupled model of hygro-thermal and damage phenomena in concrete at elevated temperatures. High temperature effects are considered by means of temperature and pressure dependence of several material parameters. Based on the mathematical model, the computer code HITECOSP was developed. Material parameters of the model were measured by several European laboratories, which participated in the "HITECO" research project. A model problem, concerning hygro-thermal behaviour and degradation of a HPC structure during fire, is solved. The influence of two different constitutive descriptions of the concrete permeability changes at high temperature, including thermo-chemical and mechanical damage effects, upon the results of computer simulations is analysed and discussed.

Effect of hardfacing on wear reduction of pick cutters under mixed rock conditions

  • Chang, Soo-Ho;Lee, Chulho;Kang, Tae-Ho;Ha, Taewook;Choi, Soon-Wook
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.141-159
    • /
    • 2017
  • A pick cutter is a rock-cutting tool used in partial-face excavation machines such as roadheaders, and its quality is a key element influencing the excavation performance and efficiency of such machines. In this study, pick cutters with hardfacing deposits applied to a tungsten carbide insert were made with aim of increasing their durability and wear resistance. They were field-tested by being installed in a roadheader and compared with conventional pick cutters under the same excavation conditions for 24 hours. The hardfaced pick cutters showed much smaller weight loss after excavation, and therefore better excavation performance, than the conventional pick cutters. In particular, the damage to and detachment (loss) of tungsten carbide inserts was minimal in the hardfaced pick cutters. A detailed inspection using scanning electron microscope-energy dispersive X-ray spectrometry and three-dimensional X-ray computed tomography scanning revealed no macro- or micro-cracks in the pick cutters. The reason for the absence of cracks may be that the heads of pick cutters are mechanically worn after the tungsten carbide inserts have been worn and damaged. However, scanning revealed the presence of voids between tungsten carbide inserts and pick cutter heads. This discovery of voids indicates the need to improve production processes in order to guarantee a higher quality of pick cutters.

Measurement of Physical Properties of Pepper for Particle Behavior analysis of sorting system for Pepper Harvester (고추수확기용 선별장치의 입자 거동 해석을 위한 고추 물성측정)

  • Byun, Jun Hee;Kim, Su Bin;Kim, Myoung Ho;Kim, Dae Cheol
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.9-9
    • /
    • 2017
  • 입자거동해석소프트웨어(EDEM)은 DEM(Discrete Element Method)기법을 이용한 입자 거동 전용 해석툴로 입자 유입량, 위치 등을 조절하여 입자거동과 관련된 제품 개발, 프로세스 최적화를 위한 비용 및 시간 절감에 활용도가 뛰어난 소프트웨어이다. EDEM을 활용하기 위해선 적용대상에 대한 물성치를 적용하여야 한다. 따라서 본 연구에서는 EDEM를 이용하여 현재 연구개발 중인 카드클리너 방식의 고추 선별기의 성능을 분석을 수행하기 위해 고추 물성측정 실험을 수행 하였다. EDEM을 이용한 입자거동해석에 필요한 개인 물성치에는 포아송비, 전단탄성계수, 밀도가 있다. 또한 입자-입자, 입자-Geometry 간의 상호관계를 위한 물성치인 반발계수, 정지마찰계수, 구름마찰계수가 필요하다. 공시 시료인 고추는 광주광역시 남구 승촌동 소재의 개인농가 Plastic 온실로 재배된 '천상'품종을 사용하였다. 푸아송 비와, 전단 탄성계수를 측정하기 위한 인장시험기기로는 만능인장시험기(TA-XT2, Stable Micro, 영국)를 이용하였으며, 인장에 의한 고추의 변형량 축정은 초고속카메라(NX4-SI, IDT, 미국)을 이용하였다. 밀도는 비중병법에 기초하여 질량과 부피를 측정하여 밀도를 계산하였다. 반발계수는 고추의 충돌 실험을 통해 변화한 높이를 이용하여 계산하였고, 충동 실험을 통해 변화한 높이는 초고속카메라를 이용하여 측정하였다. 정지마찰계수와 구름마찰계수는 고추의 미끄러짐이 시작하는 각도와 등속도 운동으로 구르는 각도를 초고속카메라를 이용하여 측정 후 계산하였다. 모든 실험은 3번 반복을 통해 평균값을 시험 결과 값으로 이용하였다. 고추의 대한 물성치 실험결과 고추의 푸아송 비는 0.294(std : 0.2), 전단탄성계수 4.624E+06 Pa, 밀도 $600kg/m^3$로 나타났다. 또한 입자-입자 간의 물성치인 반발계수는 0.383, 정지마찰계수는 0.455, 구름마찰 계수는 0.043로 나타났다. 추후 본 연구에서 측정한 고추의 물성치를 적용한 EDEM 입자거동해석 시뮬레이션을 통해 카드클리너 방식의 고추 선별기의 성능에 대한 분석을 하고자 한다.

  • PDF

NUMERICAL STUDY ON THE UNSTEADY FLOW PHYSICS OF INSTECTS' FLAPPING FLIGHT USING FLUID-STRUCTURE INTERACTION (FSI를 활용한 2차원 곤충날개 주위 유동장 해석)

  • Lee, K.B.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.151-158
    • /
    • 2009
  • To implement the insects' flapping flight for developing flapping MAVs(micro air vehicles), the unsteady flow characteristics of the insects' forward flight is investigated. In this paper, two-dimensional FSI(Fluid-Structure Interaction) simulations are conducted to examine realistic flow features of insects' flapping flight and to examine the flexibility effects of the insect's wing. The unsteady incompressible Navier-Stokes equations with an artificial compressibility method are implemented as the fluid module while the dynamic finite element equations using a direct integration method are employed as the solid module. In order to exchange physical information to each module, the common refinement method is employed as the data transfer method. Also, a simple and efficient dynamic grid deformation technique based on Delaunay graph mapping is used to deform computational grids. Compared to the earlier researches of two-dimensional rigid wing simulations, key physical phenomena and flow patterns such as vortex pairing and vortex staying can still be observed. For example, lift is mainly generated during downstroke motion by high effective angle of attack caused by translation and lagging motion. A large amount of thrust is generated abruptly at the end of upstroke motion. However, the quantitative aspect of flow field is somewhat different. A flexible wing generates more thrust but less lift than a rigid wing. This is because the net force acting on wing surface is split into two directions due to structural flexibility. As a consequence, thrust and propulsive efficiency was enhanced considerably compared to a rigid wing. From these numerical simulations, it is seen that the wing flexibility yields a significant impact on aerodynamic characteristics.

  • PDF

Substrate Effects on the Response of PZT Infrared Detectors (상이한 기판조건에 따른 PZT 적외선 감지소자의 성능 변화)

  • Go, Jong-Su;Gwak, Byeong-Man;Liu, Weiguo;Zhu, Weiguang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.428-435
    • /
    • 2002
  • Pyroelectric $Pb(Zr_{0.3}Ti_{0.7})O_3$ (PZT30/70) thin film IR detectors has been fabricated and characterised. The PZT30/70 thin film was deposited onto $Pt/Ti/Si_3N_4/SiO_2/Si$ substrate by the sol-gel process. Four different substrate conditions were studied for their effects on the pyroelectric responses of the IR detectors. The substrate conditions were the combinations of the Si etching and the Pt/Ti patterning. In the Si etched substrate, the $Si_3N_4/SiO_2$ composite layer was used as silicon etch-stop, and was used as the membrane to support the PZT pyroelectric film element as well. The measured pyroelectric current and voltage responses of detectors fabricated on the micro-machined thin $Si_3N_4/SiO_2$ membrane were two orders higher than those of the detectors on the bulk-silicon. For detectors on the membrane substrate, the Pt/Ti patterned detectors showed a 2-times higher pyroelectric response than that of not-patterned detectors. On the other hand, the pyroelectric response of the detectors on the not-etched Si substrate was almost the same, regardless of the Pt/Ti patterning. It was also found that the rise time strongly depended on the substrate thickness: the thicker the substrate was, the longer the rise-time.

The Influence of Hen Aging on Eggshell Ultrastructure and Shell Mineral Components

  • Park, Ji-Ae;Sohn, Sea-Hwan
    • Food Science of Animal Resources
    • /
    • v.38 no.5
    • /
    • pp.1080-1091
    • /
    • 2018
  • The eggshell, which is a complex and highly ordered structure, is very important factor for food safety and egg marketing. This study investigated the changes in eggshell structure and shell components in relationship to hen age. For this study, we examined the histological change of the endometrium of the 30-, 60-, and 72-wk-old commercial layers, and analyzed the ultrastructure and ionic composition of their eggshells. The results showed that histological deformation, fibrosis, atrophy and elimination of micro-villi in the uterus endometrium were found through microscopic observation that was associated with increasing hen age. Concentration of blood-ion components such as $Ca^{2+}$, $Na^+$, $K^+$, and $Cl^-$ ions did not change with age. Along with the results from the ultrastructure analysis of the eggshell, the palisade layer ratio and the density of mammillary knobs were significantly decreased in older hens. In addition, the type B mammillary knobs were frequently observed with increasing hen age. In the mineral element assay from the eggshell, $Ca^{2+}$, $S^{2-}$, and $Co^{2+}$ significantly decreased with increasing hen age, whereas $Na^+$, $K^+$, and $V^{2+}$ significantly increased. Therefore, the damages of endometrial tissue inhibit the processes of ion transmission and the crystallization of eggshell formation, resulting in a large and non-uniform mammillary knob formation. This means the conditions of endometrial cells affect the formation of the eggshell structure. In conclusion, hen aging causes the weakness of the eggshell and degrades the eggshell quality.

Study on Deformation of Miniature Metal Bellows in Cryocooler Following Temperature Change of Internal Gas (내부 기체의 온도 변화에 따른 극저온 냉각기용 소형 금속 벨로우즈의 변형에 관한 연구)

  • Lee, Seung Ha;Lee, Tae Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.429-435
    • /
    • 2015
  • A bellows is an important temperature control component in a Joule-Thomson micro-cryocooler. It is designed using a very thin shell, and the inside of the bellows is filled with nitrogen gas. The bellows is made of a nickel-cobalt alloy that maintains its strength and elastic properties in a wide range of temperatures from cryogenic to $300^{\circ}C$. The pressure of the gas and the volume within the bellows vary according to the temperature of the gas. As a result, the bellows contracts or expands in the axial direction like a spring. To explore this phenomenon, the deformation of the bellows and its internal volume must be calculated iteratively under a modified pressure until the state equation of the gas is satisfied at a given temperature. In this paper, the modified Benedict-Webb-Rubin state equation is adopted to describe the temperature-volume-pressure relations of the gas. Experiments were performed to validate the proposed method. The results of a numerical analysis and the experiments showed good agreement.